Regression Benchmarks

Dataset Overview

Dataset Instances Features Numeric Categorical Target
Boston housing 506 13 11 2 MEDV
California housing 20640 8 8 0 medianHouseValue
Geographical origin of music 1059 116 116 0 latitude
Health insurance 22272 11 4 7 whrswk
Pumadyn32nh 8192 32 32 0 thetadd6
Student performance por 649 30 13 17 G3
Superconductivity 21263 81 81 0 critical_temp

Quick Check

Dataset Type Family / Variant Test RMSE Test R²
Boston housing Best classical Trees / LightGBM 2.64293 ± 0.08667 0.92436 ± 0.00503
Best transformed CNN+MLP / DistanceMatrix 2.39441 ± 0.14017 0.93780 ± 0.00728
California housing Best classical Trees / XGBoost 0.43989 ± 0.00403 0.85687 ± 0.00263
Best transformed CNN / BIE 0.44662 ± 0.00312 0.85247 ± 0.00205
Geographical origin of music Best classical Trees / CatBoost 16.09875 ± 0.27347 0.28649 ± 0.02426
Best transformed CNN / REFINED 15.02703 ± 0.62945 0.37760 ± 0.05210
Health insurance Best classical Trees / CatBoost 14.24579 ± 0.00935 0.41469 ± 0.00077
Best transformed ViT / REFINED 14.31386 ± 0.04021 0.40908 ± 0.00332
Pumadyn32nh Best classical Trees / CatBoost 0.02097 ± 0.00004 0.64498 ± 0.00135
Best transformed ViT / REFINED 0.02185 ± 0.00008 0.61439 ± 0.00293
Student performance por Best classical Trees / LightGBM 2.07327 ± 0.01229 0.24692 ± 0.00894
Best transformed ViT+MLP / REFINED 2.00620 ± 0.02164 0.29482 ± 0.01526
Superconductivity Best classical Trees / XGBoost 9.39012 ± 0.01083 0.92444 ± 0.00017
Best transformed CNN / TINTO 9.48401 ± 0.05426 0.92292 ± 0.00088

Boston housing

Source: Boston Housing (1978)

Leaderboard

Family Best variant Test RMSE Test R² Train time (s) #Params FLOPs
Trees LightGBM 2.64293 ± 0.08667 0.92436 ± 0.00503 0.10473 ± 0.01010
MLP MLP 3.01003 ± 0.21439 0.90158 ± 0.01395 4.23418 ± 0.73795 274,945 ± 0.00000 548,864 ± 0.00000
ViT REFINED 2.57398 ± 0.21155 0.92793 ± 0.01177 29.41662 ± 0.19323 3,041,671 ± 0.00000 158,169,495 ± 0.00000
ViT+MLP Combination 2.70160 ± 0.25837 0.92046 ± 0.01509 71.95644 ± 1.05371 16,894,937 ± 0.00000 23,145,874,912 ± 4,574,605,197.45434
CNN REFINED 2.46685 ± 0.26438 0.93356 ± 0.01460 14.23677 ± 0.05346 192,825 ± 0.00000 3,284,400 ± 0.00000
CNN+MLP DistanceMatrix 2.39441 ± 0.14017 0.93780 ± 0.00728 19.18030 ± 0.52748 623,881 ± 0.00000 123,184,480 ± 0.00000
Architecture Results
Tree Baselines
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² Train time (s) #Params FLOPs
CatBoost 0.27800 ± 0.10580 3.20287 ± 0.11571 2.73597 ± 0.08619 0.99896 ± 0.00083 0.87688 ± 0.00878 0.91895 ± 0.00514 2.99438 ± 0.03236
LightGBM 1.20464 ± 0.01442 3.25573 ± 0.10716 2.64293 ± 0.08667 0.98241 ± 0.00042 0.87281 ± 0.00851 0.92436 ± 0.00503 0.10473 ± 0.01010
XGBoost 1.23884 ± 0.02319 3.13241 ± 0.04323 2.79232 ± 0.04993 0.98140 ± 0.00069 0.88234 ± 0.00326 0.91562 ± 0.00301 0.44749 ± 0.00514
MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
MLP 2.53665 ± 0.20504 3.49185 ± 0.03450 3.01003 ± 0.21439 0.92162 ± 0.01234 0.85380 ± 0.00288 0.90158 ± 0.01395 274,945 ± 0.00000 548,864 ± 0.00000 4.23418 ± 0.73795
ViT
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 1.93251 ± 0.33082 3.49700 ± 0.08594 2.98962 ± 0.25167 0.95368 ± 0.01645 0.85331 ± 0.00728 0.90275 ± 0.01619 3,260,577 ± 0.00000 163,838,060 ± 0.00000 20.66712 ± 0.51800
IGTD 9.11893 ± 0.00307 9.13305 ± 0.00026 9.63393 ± 0.00221 -0.00768 ± 0.00068 -0.00005 ± 0.00006 -0.00413 ± 0.00046 512,743 ± 0.00000 27,155,815 ± 0.00000 23.42475 ± 1.20051
REFINED 1.50936 ± 0.30300 3.14998 ± 0.08060 2.57398 ± 0.21155 0.97150 ± 0.01229 0.88098 ± 0.00614 0.92793 ± 0.01177 3,041,671 ± 0.00000 158,169,495 ± 0.00000 29.41662 ± 0.19323
DistanceMatrix 1.47646 ± 0.47992 3.50178 ± 0.12724 3.54344 ± 0.17961 0.97135 ± 0.01783 0.85283 ± 0.01058 0.86388 ± 0.01358 14,234,905 ± 0.00000 2,308,646,228 ± 0.00000 67.32671 ± 15.22236
BarGraph 1.77073 ± 0.69186 3.24519 ± 0.07944 2.96469 ± 0.53319 0.95736 ± 0.03105 0.87368 ± 0.00617 0.90245 ± 0.03758 12,071,289 ± 0.00000 1,891,104,100 ± 0.00000 47.49440 ± 0.75261
Combination 1.80507 ± 0.46080 3.21779 ± 0.19262 2.74446 ± 0.16067 0.95846 ± 0.02236 0.87550 ± 0.01513 0.91829 ± 0.00950 16,580,473 ± 0.00000 2,754,888,892 ± 0.00000 60.89286 ± 0.79736
SuperTML 2.03421 ± 1.03974 4.45341 ± 0.56251 5.36638 ± 0.31885 0.93937 ± 0.06139 0.75918 ± 0.06113 0.68756 ± 0.03674 10,514,945 ± 0.00000 1,297,985,304 ± 0.00000 39.77714 ± 3.71406
FeatureWrap 4.57558 ± 0.30882 5.69138 ± 0.10345 6.32727 ± 0.19251 0.74537 ± 0.03399 0.61154 ± 0.01406 0.56656 ± 0.02669 943,513 ± 0.00000 19,181,964 ± 0.00000 29.16736 ± 0.36974
BIE 2.26520 ± 0.41759 4.88408 ± 0.42985 5.31738 ± 0.37801 0.93613 ± 0.02537 0.71223 ± 0.05027 0.69287 ± 0.04324 7,099,777 ± 0.00000 864,935,572 ± 0.00000 31.56232 ± 3.19591
ViT + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 1.95366 ± 0.31369 3.27767 ± 0.10241 2.90662 ± 0.33039 0.95279 ± 0.01463 0.87110 ± 0.00805 0.90765 ± 0.02163 3,628,321 ± 0.00000 1,516,589,920 ± 299,742,401.47828 22.65244 ± 0.35614
IGTD 2.32634 ± 0.45024 3.51752 ± 0.06167 2.93851 ± 0.38052 0.93245 ± 0.02650 0.85162 ± 0.00522 0.90533 ± 0.02602 812,583 ± 0.00000 577,654,110 ± 50,741,741.31549 26.84440 ± 0.62645
REFINED 1.66692 ± 0.24461 3.19159 ± 0.12588 2.71211 ± 0.15036 0.96575 ± 0.01046 0.87772 ± 0.00975 0.92023 ± 0.00883 3,349,447 ± 0.00000 5,141,137,540 ± 290,316,149.83205 41.29689 ± 0.36799
DistanceMatrix 1.92433 ± 0.54507 3.49446 ± 0.19839 3.34396 ± 0.35498 0.95225 ± 0.02390 0.85322 ± 0.01669 0.87793 ± 0.02537 14,467,513 ± 0.00000 43,607,930,472 ± 3,830,566,231.60504 73.97143 ± 3.95586
BarGraph 2.00807 ± 0.36445 3.33908 ± 0.19814 3.13040 ± 0.46134 0.94985 ± 0.01879 0.86595 ± 0.01576 0.89214 ± 0.03165 11,797,241 ± 0.00000 15,869,381,664 ± 3,136,461,944.79706 54.16998 ± 1.31253
Combination 1.68597 ± 0.44069 3.21787 ± 0.15816 2.70160 ± 0.25837 0.96367 ± 0.01971 0.87562 ± 0.01204 0.92046 ± 0.01509 16,894,937 ± 0.00000 23,145,874,912 ± 4,574,605,197.45434 71.95644 ± 1.05371
SuperTML 1.96240 ± 0.13583 3.52269 ± 0.07090 2.73376 ± 0.13026 0.95315 ± 0.00648 0.85117 ± 0.00599 0.91900 ± 0.00778 10,368,001 ± 0.00000 24,675,806,448 ± 2,167,548,652.14303 45.29493 ± 1.17064
FeatureWrap 2.40244 ± 0.25579 3.51804 ± 0.04989 2.91964 ± 0.12322 0.92942 ± 0.01529 0.85159 ± 0.00420 0.90765 ± 0.00791 1,204,921 ± 0.00000 775,564,048 ± 43,795,515.41107 41.53267 ± 0.58403
BIE 2.03324 ± 0.11257 3.50626 ± 0.09037 2.78704 ± 0.09112 0.94978 ± 0.00543 0.85253 ± 0.00764 0.91589 ± 0.00556 6,843,905 ± 0.00000 7,346,259,872 ± 1,451,932,092.43856 50.24351 ± 0.52854
CNN
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 1.34596 ± 0.40460 3.24922 ± 0.12831 3.21047 ± 0.37006 0.97646 ± 0.01350 0.87327 ± 0.01010 0.88730 ± 0.02593 74,193 ± 0.00000 9,381,952 ± 0.00000 20.19407 ± 1.37805
IGTD 2.59679 ± 0.64853 3.40121 ± 0.06535 2.86891 ± 0.35293 0.91421 ± 0.03901 0.86126 ± 0.00532 0.90988 ± 0.02135 440,377 ± 0.00000 8,526,440 ± 0.00000 18.95521 ± 0.12599
REFINED 1.10799 ± 0.32747 3.16947 ± 0.07643 2.46685 ± 0.26438 0.98408 ± 0.00954 0.87951 ± 0.00585 0.93356 ± 0.01460 192,825 ± 0.00000 3,284,400 ± 0.00000 14.23677 ± 0.05346
DistanceMatrix 1.15015 ± 0.18339 3.18025 ± 0.15685 2.50715 ± 0.09029 0.98364 ± 0.00525 0.87850 ± 0.01182 0.93193 ± 0.00494 185,353 ± 0.00000 122,308,640 ± 0.00000 18.11340 ± 0.76780
BarGraph 1.36435 ± 0.42157 3.40128 ± 0.14756 2.57906 ± 0.11596 0.97572 ± 0.01488 0.86109 ± 0.01224 0.92792 ± 0.00659 4,517,969 ± 0.00000 1,276,193,664 ± 0.00000 23.68178 ± 0.48813
Combination 1.07358 ± 0.30007 3.21128 ± 0.13433 2.63395 ± 0.15525 0.98516 ± 0.00682 0.87619 ± 0.01046 0.92473 ± 0.00911 9,952,017 ± 0.00000 8,098,979,136 ± 0.00000 34.41181 ± 0.25650
SuperTML 0.80803 ± 0.34971 4.01001 ± 0.14316 4.40619 ± 0.21669 0.99090 ± 0.00702 0.80701 ± 0.01384 0.78955 ± 0.02032 10,729,409 ± 0.00000 3,039,419,264 ± 0.00000 35.81777 ± 0.39223
FeatureWrap 3.49106 ± 0.44523 4.21044 ± 0.27441 6.18150 ± 0.37800 0.85039 ± 0.03802 0.78673 ± 0.02836 0.58537 ± 0.05072 154,961 ± 0.00000 2,986,320 ± 0.00000 19.31483 ± 0.15387
BIE 2.61601 ± 0.74975 5.84682 ± 0.31769 6.00553 ± 0.34949 0.91162 ± 0.05373 0.58918 ± 0.04365 0.60875 ± 0.04584 1,713,897 ± 0.00000 42,145,024 ± 0.00000 17.52854 ± 0.69925
CNN + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 1.00499 ± 0.18957 3.33411 ± 0.15143 2.80304 ± 0.19099 0.98741 ± 0.00490 0.86650 ± 0.01227 0.91468 ± 0.01137 755,025 ± 0.00000 10,741,920 ± 0.00000 20.57700 ± 0.04900
IGTD 1.91775 ± 0.87132 3.31963 ± 0.12105 2.64527 ± 0.58132 0.94807 ± 0.05127 0.86774 ± 0.00984 0.92137 ± 0.03789 919,625 ± 0.00000 9,483,560 ± 0.00000 20.53250 ± 0.03646
REFINED 1.08777 ± 0.12727 3.17508 ± 0.18180 2.52415 ± 0.15201 0.98550 ± 0.00356 0.87882 ± 0.01413 0.93087 ± 0.00827 543,129 ± 0.00000 3,983,920 ± 0.00000 15.40566 ± 0.02158
DistanceMatrix 1.09828 ± 0.22947 3.11373 ± 0.11421 2.39441 ± 0.14017 0.98487 ± 0.00660 0.88364 ± 0.00856 0.93780 ± 0.00728 623,881 ± 0.00000 123,184,480 ± 0.00000 19.18030 ± 0.52748
BarGraph 1.21987 ± 0.29213 3.35928 ± 0.07035 2.71507 ± 0.11511 0.98114 ± 0.00891 0.86466 ± 0.00563 0.92013 ± 0.00680 4,695,697 ± 0.00000 1,276,548,448 ± 0.00000 24.80602 ± 0.15945
Combination 1.31655 ± 0.40520 3.19004 ± 0.12060 2.65254 ± 0.16080 0.97740 ± 0.01219 0.87785 ± 0.00942 0.92366 ± 0.00940 9,992,017 ± 0.00000 8,099,058,752 ± 0.00000 38.09345 ± 0.57019
SuperTML 1.30682 ± 0.39233 3.50697 ± 0.14106 3.44490 ± 0.28056 0.97781 ± 0.01313 0.85235 ± 0.01205 0.87093 ± 0.02102 10,767,809 ± 0.00000 3,039,495,696 ± 0.00000 45.59449 ± 2.34726
FeatureWrap 1.89755 ± 0.42813 3.32663 ± 0.07192 2.95132 ± 0.30706 0.95459 ± 0.02022 0.86727 ± 0.00576 0.90495 ± 0.02093 568,513 ± 0.00000 3,812,240 ± 0.00000 26.58122 ± 0.89657
BIE 1.41576 ± 0.31580 3.89415 ± 0.16937 3.70350 ± 0.41509 0.97474 ± 0.00997 0.81791 ± 0.01586 0.85012 ± 0.03325 2,363,273 ± 0.00000 43,442,560 ± 0.00000 19.26801 ± 1.32583

California housing

Source: OpenML · Original

Leaderboard

Family Best variant Test RMSE Test R² Train time (s) #Params FLOPs
Trees XGBoost 0.43989 ± 0.00403 0.85687 ± 0.00263 1.77672 ± 0.09260
MLP MLP 0.48063 ± 0.00318 0.82914 ± 0.00226 32.84561 ± 4.31202 267,777 ± 0.00000 534,528 ± 0.00000
ViT SuperTML 0.46974 ± 0.00584 0.83678 ± 0.00406 3,945.05697 ± 7.98396 20,544,577 ± 0.00000 8,297,965,816 ± 0.00000
ViT+MLP SuperTML 0.46976 ± 0.01030 0.83673 ± 0.00718 3,826.40757 ± 6.33717 20,501,569 ± 0.00000 67,793,230,784 ± 13,398,813,701.18015
CNN BIE 0.44662 ± 0.00312 0.85247 ± 0.00205 1,412.74217 ± 1.22171 9,703,809 ± 0.00000 11,479,253,760 ± 0.00000
CNN+MLP SuperTML 0.44877 ± 0.00787 0.85101 ± 0.00523 1,041.1302 ± 6.74585 10,748,017 ± 0.00000 2,931,497,536 ± 0.00000
Architecture Results
Tree Baselines
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² Train time (s) #Params FLOPs
CatBoost 0.38883 ± 0.00063 0.46611 ± 0.00213 0.44749 ± 0.00144 0.88624 ± 0.00037 0.83570 ± 0.00150 0.85189 ± 0.00095 4.40361 ± 0.25380
LightGBM 0.34418 ± 0.00287 0.45971 ± 0.00735 0.44134 ± 0.00771 0.91087 ± 0.00149 0.84015 ± 0.00514 0.85591 ± 0.00506 0.53835 ± 0.15180
XGBoost 0.15339 ± 0.00078 0.45610 ± 0.00391 0.43989 ± 0.00403 0.98230 ± 0.00018 0.84267 ± 0.00270 0.85687 ± 0.00263 1.77672 ± 0.09260
MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
MLP 0.45728 ± 0.00309 0.49768 ± 0.00339 0.48063 ± 0.00318 0.84266 ± 0.00213 0.81268 ± 0.00255 0.82914 ± 0.00226 267,777 ± 0.00000 534,528 ± 0.00000 32.84561 ± 4.31202
ViT
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 0.61452 ± 0.01092 0.67810 ± 0.00610 0.64259 ± 0.00535 0.71580 ± 0.01016 0.65225 ± 0.00629 0.69459 ± 0.00510 11,232,121 ± 0.00000 108,435,870 ± 0.00000 152.55714 ± 1.35583
IGTD 1.15301 ± 0.00003 1.14998 ± 0.00002 1.16281 ± 0.00001 -0.00026 ± 0.00005 -0.00008 ± 0.00003 -0.00005 ± 0.00002 5,623,111 ± 0.00000 112,844,007 ± 0.00000 244.20150 ± 0.26949
REFINED 0.49388 ± 0.01815 0.58730 ± 0.00350 0.55546 ± 0.00741 0.81628 ± 0.01344 0.73916 ± 0.00311 0.77177 ± 0.00607 29,768,263 ± 0.00000 582,613,719 ± 0.00000 347.38482 ± 0.74021
DistanceMatrix 0.57667 ± 0.02208 0.62189 ± 0.01604 0.59709 ± 0.01012 0.74950 ± 0.01922 0.70738 ± 0.01509 0.73626 ± 0.00895 13,164,103 ± 0.00000 1,006,315,932 ± 0.00000 582.92142 ± 1.39248
BarGraph 0.76060 ± 0.00642 0.77849 ± 0.00347 0.76262 ± 0.00537 0.56471 ± 0.00737 0.54168 ± 0.00409 0.56984 ± 0.00607 4,282,777 ± 0.00000 552,650,732 ± 0.00000 276.27179 ± 1.85934
Combination 0.50753 ± 0.00676 0.57846 ± 0.00394 0.56286 ± 0.00440 0.80617 ± 0.00515 0.74695 ± 0.00344 0.76567 ± 0.00367 8,363,737 ± 0.00000 1,327,060,508 ± 0.00000 665.79443 ± 12.26785
SuperTML 0.30560 ± 0.05360 0.48128 ± 0.01008 0.46974 ± 0.00584 0.92800 ± 0.02454 0.82477 ± 0.00737 0.83678 ± 0.00406 20,544,577 ± 0.00000 8,297,965,816 ± 0.00000 3,945.05697 ± 7.98396
FeatureWrap 0.73306 ± 0.00395 0.79687 ± 0.00374 0.72596 ± 0.00532 0.59567 ± 0.00435 0.51978 ± 0.00451 0.61019 ± 0.00571 9,881,593 ± 0.00000 96,348,000 ± 0.00000 309.49389 ± 2.01000
BIE 0.36140 ± 0.13995 0.54439 ± 0.02087 0.52315 ± 0.01736 0.88994 ± 0.06953 0.77562 ± 0.01716 0.79740 ± 0.01342 8,180,225 ± 0.00000 1,050,607,440 ± 0.00000 534.41748 ± 2.41966
ViT + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 0.45674 ± 0.01856 0.50312 ± 0.01007 0.49053 ± 0.01151 0.84284 ± 0.01308 0.80851 ± 0.00775 0.82196 ± 0.00846 11,166,297 ± 0.00000 1,547,193,712 ± 305,791,006.96316 195.80453 ± 8.04050
IGTD 0.44018 ± 0.00216 0.49436 ± 0.00251 0.48557 ± 0.00336 0.85421 ± 0.00143 0.81518 ± 0.00187 0.82561 ± 0.00241 5,907,207 ± 0.00000 2,868,051,006 ± 251,932,600.68048 273.95670 ± 10.23985
REFINED 0.49616 ± 0.06657 0.53301 ± 0.04684 0.51819 ± 0.04558 0.81211 ± 0.05092 0.78382 ± 0.03844 0.80017 ± 0.03550 29,355,847 ± 0.00000 6,521,062,584 ± 1,288,838,158.12144 426.45587 ± 6.52916
DistanceMatrix 0.45873 ± 0.01869 0.50332 ± 0.01002 0.48512 ± 0.00773 0.84146 ± 0.01325 0.80836 ± 0.00772 0.82590 ± 0.00560 13,433,031 ± 0.00000 8,953,046,752 ± 1,769,501,233.39329 640.70717 ± 6.26998
BarGraph 0.46115 ± 0.00951 0.50180 ± 0.00456 0.48732 ± 0.00523 0.83995 ± 0.00669 0.80956 ± 0.00348 0.82434 ± 0.00379 3,629,433 ± 0.00000 10,406,511,576 ± 914,118,863.2519 290.97938 ± 5.03423
Combination 0.45835 ± 0.02473 0.50601 ± 0.01339 0.49449 ± 0.01299 0.84157 ± 0.01759 0.80626 ± 0.01038 0.81905 ± 0.00965 8,344,665 ± 0.00000 11,140,806,368 ± 2,201,895,193.36175 690.97560 ± 4.01270
SuperTML 0.28491 ± 0.08209 0.47589 ± 0.00321 0.46976 ± 0.01030 0.93487 ± 0.03562 0.82873 ± 0.00231 0.83673 ± 0.00718 20,501,569 ± 0.00000 67,793,230,784 ± 13,398,813,701.18015 3,826.40757 ± 6.33717
FeatureWrap 0.44808 ± 0.00268 0.49684 ± 0.00235 0.48778 ± 0.00450 0.84894 ± 0.00181 0.81332 ± 0.00176 0.82401 ± 0.00325 9,868,409 ± 0.00000 1,385,440,768 ± 273,821,774.38331 352.41515 ± 7.03545
BIE 0.44728 ± 0.02423 0.49988 ± 0.01102 0.48701 ± 0.01109 0.84912 ± 0.01688 0.81096 ± 0.00845 0.82451 ± 0.00808 8,349,761 ± 0.00000 8,927,987,328 ± 1,764,548,429.85005 587.75184 ± 4.40892
CNN
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 0.56667 ± 0.01547 0.65894 ± 0.00063 0.62572 ± 0.00551 0.75826 ± 0.01312 0.67164 ± 0.00063 0.71041 ± 0.00513 11,020,865 ± 0.00000 414,831,744 ± 0.00000 175.04771 ± 5.54457
IGTD 0.40991 ± 0.03802 0.52349 ± 0.00403 3.14827 ± 2.10974 0.87271 ± 0.02464 0.79275 ± 0.00319 -8.96428 ± 11.03792 2,673,489 ± 0.00000 48,097,808 ± 0.00000 91.82369 ± 3.08409
REFINED 0.48096 ± 0.02209 0.59928 ± 0.00618 0.56371 ± 0.00368 0.82566 ± 0.01639 0.72838 ± 0.00559 0.76497 ± 0.00308 1,317,361 ± 0.00000 22,116,784 ± 0.00000 76.05887 ± 0.69582
DistanceMatrix 0.44172 ± 0.05716 0.58654 ± 0.01273 0.56900 ± 0.01700 0.85123 ± 0.03660 0.73974 ± 0.01141 0.76038 ± 0.01452 6,857,993 ± 0.00000 1,746,277,344 ± 0.00000 416.32115 ± 0.45420
BarGraph 0.75427 ± 0.00182 0.77748 ± 0.00095 0.75653 ± 0.00102 0.57194 ± 0.00206 0.54288 ± 0.00112 0.57670 ± 0.00115 26,209 ± 0.00000 981,248 ± 0.00000 70.14003 ± 0.61764
Combination 0.47767 ± 0.03061 0.56438 ± 0.00552 0.55096 ± 0.01109 0.82776 ± 0.02251 0.75910 ± 0.00472 0.77542 ± 0.00905 5,920,849 ± 0.00000 1,336,089,664 ± 0.00000 302.19510 ± 0.27329
SuperTML 0.01378 ± 0.00479 0.47443 ± 0.00373 0.45087 ± 0.00592 0.99984 ± 0.00012 0.82977 ± 0.00268 0.84963 ± 0.00397 10,645,233 ± 0.00000 2,931,292,480 ± 0.00000 1,031.57336 ± 17.72613
FeatureWrap 0.68080 ± 0.01616 0.69323 ± 0.00730 0.67850 ± 0.01115 0.65112 ± 0.01665 0.63655 ± 0.00764 0.65944 ± 0.01126 37,993 ± 0.00000 458,436 ± 0.00000 70.02285 ± 0.28436
BIE 0.02773 ± 0.01455 0.46976 ± 0.00469 0.44662 ± 0.00312 0.99929 ± 0.00063 0.83311 ± 0.00333 0.85247 ± 0.00205 9,703,809 ± 0.00000 11,479,253,760 ± 0.00000 1,412.74217 ± 1.22171
CNN + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 0.42472 ± 0.00838 0.51350 ± 0.00796 0.50416 ± 0.00665 0.86423 ± 0.00541 0.80055 ± 0.00620 0.81198 ± 0.00498 10,725,505 ± 0.00000 414,241,120 ± 0.00000 175.60802 ± 2.91739
IGTD 0.38630 ± 0.03014 0.50047 ± 0.01254 1.42743 ± 0.59698 0.88718 ± 0.01817 0.81049 ± 0.00948 -0.71785 ± 1.50272 2,941,265 ± 0.00000 48,632,336 ± 0.00000 105.17529 ± 11.15271
REFINED 0.38848 ± 0.04257 0.53286 ± 0.00510 0.51555 ± 0.00643 0.88536 ± 0.02445 0.78526 ± 0.00413 0.80340 ± 0.00491 1,535,089 ± 0.00000 22,551,536 ± 0.00000 83.51049 ± 4.73300
DistanceMatrix 0.42044 ± 0.03069 0.49810 ± 0.00470 0.49232 ± 0.00715 0.86643 ± 0.01931 0.81236 ± 0.00353 0.82071 ± 0.00520 6,648,841 ± 0.00000 1,745,859,040 ± 0.00000 421.32265 ± 4.17418
BarGraph 0.43451 ± 0.00282 0.49357 ± 0.00311 0.48584 ± 0.00419 0.85794 ± 0.00184 0.81577 ± 0.00232 0.82541 ± 0.00302 326,273 ± 0.00000 45,517,184 ± 0.00000 158.89147 ± 1.23917
Combination 0.40111 ± 0.03899 0.50397 ± 0.00353 0.49452 ± 0.00943 0.87804 ± 0.02303 0.80792 ± 0.00269 0.81908 ± 0.00687 5,662,801 ± 0.00000 1,335,573,568 ± 0.00000 307.60273 ± 0.98531
SuperTML 0.06800 ± 0.02138 0.47212 ± 0.00471 0.44877 ± 0.00787 0.99625 ± 0.00236 0.83142 ± 0.00337 0.85101 ± 0.00523 10,748,017 ± 0.00000 2,931,497,536 ± 0.00000 1,041.1302 ± 6.74585
FeatureWrap 0.42977 ± 0.01018 0.50982 ± 0.00162 0.49455 ± 0.00228 0.86097 ± 0.00665 0.80344 ± 0.00125 0.81911 ± 0.00167 340,281 ± 0.00000 1,061,952 ± 0.00000 82.07914 ± 0.56705
BIE 0.04854 ± 0.02221 0.48339 ± 0.00198 0.45310 ± 0.00374 0.99793 ± 0.00203 0.82329 ± 0.00145 0.84815 ± 0.00252 10,430,465 ± 0.00000 11,480,705,536 ± 0.00000 1,423.09332 ± 1.15410

Geographical origin of music

Source: OpenML · Original

Leaderboard

Family Best variant Test RMSE Test R² Train time (s) #Params FLOPs
Trees CatBoost 16.09875 ± 0.27347 0.28649 ± 0.02426 5.40574 ± 0.01840
MLP MLP 16.82875 ± 0.58908 0.21974 ± 0.05508 6.15275 ± 0.54803 224,257 ± 0.00000 447,616 ± 0.00000
ViT BarGraph 16.91933 ± 0.91566 0.21024 ± 0.08402 59.57013 ± 7.93472 6,900,631 ± 0.00000 223,482,786 ± 0.00000
ViT+MLP Combination 16.10768 ± 0.12356 0.28583 ± 0.01098 52.62258 ± 1.54688 9,753,271 ± 0.00000 6,869,758,986 ± 603,446,815.89358
CNN REFINED 15.02703 ± 0.62945 0.37760 ± 0.05210 17.44302 ± 0.11142 3,738,049 ± 0.00000 120,195,072 ± 0.00000
CNN+MLP REFINED 15.29549 ± 0.55394 0.35539 ± 0.04664 18.31227 ± 0.12764 3,843,265 ± 0.00000 120,404,960 ± 0.00000
Architecture Results
Tree Baselines
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² Train time (s) #Params FLOPs
CatBoost 0.05557 ± 0.00772 16.06202 ± 0.18918 16.09875 ± 0.27347 0.99999 ± 0.00000 0.34184 ± 0.01551 0.28649 ± 0.02426 5.40574 ± 0.01840
LightGBM 0.16624 ± 0.03577 16.21642 ± 0.25397 16.98768 ± 0.27991 0.99991 ± 0.00004 0.32907 ± 0.02109 0.20553 ± 0.02620 0.28268 ± 0.01466
XGBoost 0.33621 ± 0.00319 16.37622 ± 0.32143 16.30701 ± 0.36834 0.99965 ± 0.00001 0.31570 ± 0.02669 0.26778 ± 0.03284 1.55595 ± 0.01979
MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
MLP 10.69368 ± 1.91871 15.51013 ± 0.46948 16.82875 ± 0.58908 0.63755 ± 0.13473 0.38591 ± 0.03751 0.21974 ± 0.05508 224,257 ± 0.00000 447,616 ± 0.00000 6.15275 ± 0.54803
ViT
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 13.70347 ± 2.51237 17.03049 ± 0.48423 18.52677 ± 0.28237 0.40415 ± 0.21213 0.25968 ± 0.04228 0.05509 ± 0.02876 5,811,351 ± 0.00000 190,865,164 ± 0.00000 46.01703 ± 4.92198
IGTD 4.38130 ± 2.75908 15.54277 ± 0.44909 17.99486 ± 0.78529 0.92187 ± 0.10129 0.38336 ± 0.03551 0.10737 ± 0.07837 18,975,257 ± 0.00000 187,320,724 ± 0.00000 98.01576 ± 3.22877
REFINED 12.73110 ± 3.20448 17.47121 ± 0.58240 17.68148 ± 0.54004 0.47380 ± 0.24188 0.22068 ± 0.05152 0.13886 ± 0.05282 4,072,967 ± 0.00000 1,237,334,920 ± 0.00000 50.97426 ± 1.32109
DistanceMatrix 11.53372 ± 2.91193 16.06591 ± 0.18580 17.57294 ± 0.84132 0.56799 ± 0.18100 0.34152 ± 0.01526 0.14847 ± 0.08357 24,509,305 ± 0.00000 228,074,320 ± 0.00000 51.79272 ± 2.42832
BarGraph 11.66409 ± 1.05832 17.42122 ± 0.35203 16.91933 ± 0.91566 0.57684 ± 0.07260 0.22557 ± 0.03103 0.21024 ± 0.08402 6,900,631 ± 0.00000 223,482,786 ± 0.00000 59.57013 ± 7.93472
Combination 11.55673 ± 2.67506 16.69437 ± 0.38998 17.58062 ± 1.12846 0.56962 ± 0.17848 0.28876 ± 0.03341 0.14649 ± 0.11207 9,560,503 ± 0.00000 314,769,189 ± 0.00000 43.79353 ± 0.88633
SuperTML 15.00412 ± 1.59699 19.24220 ± 0.30550 19.04030 ± 0.12776 0.29807 ± 0.14780 0.05533 ± 0.03011 0.00213 ± 0.01335 5,039,297 ± 0.00000 168,272,312 ± 0.00000 71.57072 ± 0.39260
FeatureWrap 15.36428 ± 0.55970 18.35840 ± 0.28669 18.77633 ± 0.23099 0.26981 ± 0.05265 0.14012 ± 0.02685 0.02952 ± 0.02381 2,223,271 ± 0.00000 22,210,476 ± 0.00000 32.03794 ± 0.18428
BIE 17.83038 ± 0.36524 19.74467 ± 0.09284 19.09284 ± 0.02706 0.01731 ± 0.04006 0.00553 ± 0.00933 -0.00335 ± 0.00284 20,250,457 ± 0.00000 190,315,952 ± 0.00000 50.08791 ± 1.41411
ViT + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 11.27870 ± 0.31786 15.67644 ± 0.16878 16.16954 ± 0.32113 0.60668 ± 0.02228 0.37307 ± 0.01343 0.28014 ± 0.02850 5,800,087 ± 0.00000 1,888,211,296 ± 373,190,524.93865 45.43299 ± 1.59490
IGTD 11.49398 ± 1.82290 15.90038 ± 0.40134 17.39535 ± 0.77172 0.58357 ± 0.13235 0.35476 ± 0.03226 0.16581 ± 0.07515 19,047,193 ± 0.00000 2,692,426,912 ± 532,137,592.21586 54.17768 ± 0.81412
REFINED 10.88294 ± 0.70574 15.46777 ± 0.30883 16.18275 ± 0.41792 0.63280 ± 0.04735 0.38951 ± 0.02433 0.27881 ± 0.03704 4,107,015 ± 0.00000 22,952,799,504 ± 2,016,197,919.71731 41.30654 ± 0.10477
DistanceMatrix 10.69971 ± 1.13039 15.59085 ± 0.23527 16.26941 ± 0.43020 0.64309 ± 0.07573 0.37984 ± 0.01857 0.27105 ± 0.03890 23,906,425 ± 0.00000 3,014,266,752 ± 595,746,775.72737 55.16051 ± 0.52730
BarGraph 8.79557 ± 1.46960 15.62614 ± 0.41414 16.46694 ± 0.35351 0.75562 ± 0.08199 0.37679 ± 0.03272 0.25338 ± 0.03206 6,862,999 ± 0.00000 7,575,609,720 ± 427,788,953.20912 69.28047 ± 1.21371
Combination 12.21999 ± 1.18632 15.81405 ± 0.25097 16.10768 ± 0.12356 0.53511 ± 0.08945 0.36195 ± 0.02026 0.28583 ± 0.01098 9,753,271 ± 0.00000 6,869,758,986 ± 603,446,815.89358 52.62258 ± 1.54688
SuperTML 7.93616 ± 1.83935 15.33343 ± 0.54975 16.71844 ± 0.29170 0.79702 ± 0.09977 0.39964 ± 0.04318 0.23050 ± 0.02715 5,360,865 ± 0.00000 1,577,520,064 ± 311,784,778.55341 81.53160 ± 1.05610
FeatureWrap 9.21742 ± 0.92978 15.51625 ± 0.51796 16.67730 ± 0.72491 0.73534 ± 0.05056 0.38532 ± 0.04116 0.23331 ± 0.06575 2,517,607 ± 0.00000 731,278,872 ± 64,236,301.11885 41.72618 ± 1.19304
BIE 11.16109 ± 1.23325 15.92937 ± 0.75222 16.55521 ± 0.17354 0.61133 ± 0.08502 0.35158 ± 0.06225 0.24557 ± 0.01578 19,967,065 ± 0.00000 8,862,326,592 ± 500,448,882.12496 67.69650 ± 3.22348
CNN
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 11.42706 ± 5.63796 17.50269 ± 0.46048 18.69147 ± 1.01999 0.51795 ± 0.33917 0.21813 ± 0.04067 0.03610 ± 0.10680 1,064,865 ± 0.00000 112,489,856 ± 0.00000 22.07763 ± 0.29004
IGTD 3.40363 ± 1.57712 15.76505 ± 0.74902 17.51502 ± 0.49999 0.95805 ± 0.03678 0.36488 ± 0.05951 0.15508 ± 0.04785 283,521 ± 0.00000 12,525,632 ± 0.00000 23.86034 ± 0.15064
REFINED 1.45952 ± 0.31864 15.26121 ± 0.31388 15.02703 ± 0.62945 0.99317 ± 0.00279 0.40569 ± 0.02440 0.37760 ± 0.05210 3,738,049 ± 0.00000 120,195,072 ± 0.00000 17.44302 ± 0.11142
DistanceMatrix 5.26771 ± 4.56349 15.72246 ± 0.50765 16.66954 ± 0.89513 0.86278 ± 0.18246 0.36891 ± 0.04026 0.23341 ± 0.08207 1,203,209 ± 0.00000 137,155,464 ± 0.00000 29.85507 ± 1.14905
BarGraph 5.41248 ± 4.20403 17.10003 ± 0.67535 17.98593 ± 0.71919 0.86579 ± 0.16321 0.25317 ± 0.05967 0.10848 ± 0.07187 86,545 ± 0.00000 90,185,728 ± 0.00000 28.58858 ± 0.19662
Combination 2.21433 ± 1.04818 15.95586 ± 0.17249 16.76053 ± 0.27255 0.98213 ± 0.01559 0.35052 ± 0.01405 0.22664 ± 0.02509 2,976,641 ± 0.00000 991,275,840 ± 0.00000 27.91533 ± 0.61218
SuperTML 14.58648 ± 1.90400 18.78454 ± 0.51314 19.16329 ± 0.47282 0.33360 ± 0.17012 0.09937 ± 0.04895 -0.01126 ± 0.04976 277,457 ± 0.00000 279,559,680 ± 0.00000 34.35937 ± 0.34717
FeatureWrap 15.37580 ± 1.24064 18.89610 ± 0.46891 19.02199 ± 0.44515 0.26569 ± 0.11599 0.08874 ± 0.04542 0.00364 ± 0.04705 36,769 ± 0.00000 3,266,144 ± 0.00000 13.14731 ± 0.89654
BIE 4.88207 ± 4.02859 19.64237 ± 0.61272 19.34129 ± 0.51306 0.88623 ± 0.13971 0.01506 ± 0.06071 -0.03021 ± 0.05498 19,046,097 ± 0.00000 1,580,752,896 ± 0.00000 38.22191 ± 0.87412
CNN + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 10.11680 ± 2.57885 15.85264 ± 0.61112 17.19357 ± 0.86346 0.66731 ± 0.15259 0.35819 ± 0.04981 0.18469 ± 0.08119 1,354,913 ± 0.00000 113,068,800 ± 0.00000 24.04323 ± 0.43570
IGTD 3.37414 ± 3.68402 16.04367 ± 0.78891 17.85496 ± 0.89318 0.93127 ± 0.13106 0.34214 ± 0.06378 0.12078 ± 0.08993 505,473 ± 0.00000 12,968,736 ± 0.00000 23.35832 ± 0.13444
REFINED 3.90924 ± 2.74580 15.06717 ± 0.42406 15.29549 ± 0.55394 0.93414 ± 0.07172 0.42054 ± 0.03240 0.35539 ± 0.04664 3,843,265 ± 0.00000 120,404,960 ± 0.00000 18.31227 ± 0.12764
DistanceMatrix 2.46382 ± 1.43092 16.01207 ± 0.36239 16.19995 ± 0.35934 0.97618 ± 0.02643 0.34573 ± 0.02997 0.27738 ± 0.03198 1,472,777 ± 0.00000 137,693,672 ± 0.00000 30.08562 ± 0.68356
BarGraph 13.46694 ± 0.92622 17.15620 ± 0.49037 17.43264 ± 0.60262 0.43749 ± 0.07690 0.24870 ± 0.04300 0.16275 ± 0.05797 318,865 ± 0.00000 90,649,472 ± 0.00000 31.54327 ± 0.74361
Combination 2.69676 ± 0.48890 15.55850 ± 0.28827 16.38854 ± 0.14145 0.97694 ± 0.00809 0.38235 ± 0.02296 0.26070 ± 0.01276 3,013,761 ± 0.00000 991,349,664 ± 0.00000 28.90632 ± 1.47219
SuperTML 12.44674 ± 1.87392 16.39167 ± 0.44488 17.21217 ± 0.44550 0.51262 ± 0.14688 0.31422 ± 0.03778 0.18414 ± 0.04263 542,865 ± 0.00000 280,089,472 ± 0.00000 35.44523 ± 0.53667
FeatureWrap 11.59757 ± 3.70233 17.73740 ± 0.23283 18.04943 ± 0.44827 0.55051 ± 0.21409 0.19735 ± 0.02110 0.10287 ± 0.04485 257,745 ± 0.00000 3,707,280 ± 0.00000 13.81799 ± 1.11630
BIE 3.94150 ± 0.84846 18.73255 ± 0.55031 18.62305 ± 0.62363 0.95022 ± 0.01925 0.10427 ± 0.05202 0.04456 ± 0.06396 18,945,553 ± 0.00000 1,580,551,520 ± 0.00000 40.39863 ± 0.22127

Health insurance

Source: OpenML · Original

Leaderboard

Family Best variant Test RMSE Test R² Train time (s) #Params FLOPs
Trees CatBoost 14.24579 ± 0.00935 0.41469 ± 0.00077 8.40559 ± 0.18532
MLP MLP 14.41788 ± 0.05896 0.40045 ± 0.00491 23.59535 ± 0.16191 72,705 ± 0.00000 144,896 ± 0.00000
ViT REFINED 14.31386 ± 0.04021 0.40908 ± 0.00332 112.10536 ± 6.41435 3,954,055 ± 0.00000 178,178,231 ± 0.00000
CNN Combination 14.35479 ± 0.02489 0.40570 ± 0.00206 341.71894 ± 121.41553 14,729 ± 0.00000 30,507,467,000.4 ± 67,671,999,500.72966
Architecture Results
Tree Baselines
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² Train time (s) #Params FLOPs
CatBoost 14.00700 ± 0.01523 14.49204 ± 0.00387 14.24579 ± 0.00935 0.44059 ± 0.00122 0.40015 ± 0.00032 0.41469 ± 0.00077 8.40559 ± 0.18532
LightGBM 14.00577 ± 0.00000 14.50065 ± 0.00000 14.26687 ± 0.00000 0.44068 ± 0.00000 0.39944 ± 0.00000 0.41296 ± 0.00000 0.15978 ± 0.03133
XGBoost 13.96504 ± 0.00298 14.48740 ± 0.01172 14.25517 ± 0.00724 0.44393 ± 0.00024 0.40054 ± 0.00097 0.41392 ± 0.00060 0.66936 ± 0.03725
MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
MLP 14.26401 ± 0.23963 14.66848 ± 0.04344 14.41788 ± 0.05896 0.41974 ± 0.01941 0.38545 ± 0.00364 0.40045 ± 0.00491 72,705 ± 0.00000 144,896 ± 0.00000 23.59535 ± 0.16191
ViT
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 14.90667 ± 0.07405 14.99027 ± 0.02687 14.75547 ± 0.06309 0.36640 ± 0.00630 0.35820 ± 0.00230 0.37205 ± 0.00537 3,052,633 ± 0.00000 30,099,212 ± 0.00000 218.86890 ± 3.80415
IGTD 14.41499 ± 0.03905 14.74528 ± 0.05914 14.50579 ± 0.04380 0.40752 ± 0.00321 0.37900 ± 0.00498 0.39313 ± 0.00367 15,348,535 ± 0.00000 149,915,190 ± 0.00000 198.74354 ± 1.54255
REFINED 14.16646 ± 0.14277 14.56664 ± 0.07354 14.31386 ± 0.04021 0.42773 ± 0.01154 0.39395 ± 0.00613 0.40908 ± 0.00332 3,954,055 ± 0.00000 178,178,231 ± 0.00000 112.10536 ± 6.41435
DistanceMatrix 14.40996 ± 0.11359 14.64094 ± 0.06183 14.46737 ± 0.08837 0.40791 ± 0.00936 0.38775 ± 0.00518 0.39632 ± 0.00740 18,009,271 ± 0.00000 938,846,999 ± 0.00000 452.18137 ± 1.34062
BarGraph 14.29940 ± 0.07290 14.63614 ± 0.04308 14.36011 ± 0.01015 0.41697 ± 0.00595 0.38816 ± 0.00361 0.40526 ± 0.00084 17,784,983 ± 0.00000 901,498,431 ± 0.00000 463.53721 ± 1.41682
Combination 14.30616 ± 0.13358 14.59731 ± 0.01957 14.36827 ± 0.01376 0.41639 ± 0.01085 0.39141 ± 0.00163 0.40458 ± 0.00114 782,743 ± 0.00000 43,985,679 ± 0.00000 133.54671 ± 2.39014
SuperTML 14.32618 ± 0.09602 14.71468 ± 0.03609 14.43704 ± 0.03742 0.41478 ± 0.00783 0.38158 ± 0.00303 0.39887 ± 0.00312 1,228,673 ± 0.00000 128,519,616 ± 0.00000 849.08724 ± 16.28477
FeatureWrap 14.57555 ± 0.13783 14.90586 ± 0.03114 14.80843 ± 0.04887 0.39421 ± 0.01148 0.36540 ± 0.00265 0.36754 ± 0.00418 6,685,239 ± 0.00000 66,224,004 ± 0.00000 266.60863 ± 3.80443
BIE 14.34745 ± 0.16886 14.76377 ± 0.08510 14.56183 ± 0.08750 0.41300 ± 0.01387 0.37743 ± 0.00719 0.38841 ± 0.00736 2,595,745 ± 0.00000 25,652,424 ± 0.00000 296.86140 ± 3.08840
ViT + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO
IGTD
REFINED
DistanceMatrix
BarGraph
Combination
SuperTML
FeatureWrap 14.64419 ± 0.06402 14.92097 ± 0.05659 14.77694 ± 0.02616 0.38852 ± 0.00534 0.36411 ± 0.00482 0.37023 ± 0.00223 6,660,407 ± 0.00000 359,965,332,836 ± 793,197,824,645.23132 595.82048 ± 170.82780
BIE 14.06634 ± 0.42315 14.69208 ± 0.13668 14.46670 ± 0.09874 0.43543 ± 0.03352 0.38344 ± 0.01153 0.39637 ± 0.00826 2,781,441 ± 0.00000 113,740,118,660.8 ± 252,604,596,884.66263 673.43974 ± 153.13924
CNN
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 14.20966 ± 0.12760 15.13582 ± 0.06853 14.90585 ± 0.06573 0.42424 ± 0.01037 0.34566 ± 0.00593 0.35918 ± 0.00566 137,193 ± 0.00000 97,100,106,840 ± 177,334,897,633.34714 273.75396 ± 91.47594
IGTD 14.07675 ± 0.56979 14.87647 ± 0.16764 14.77837 ± 0.23073 0.43426 ± 0.04490 0.36784 ± 0.01431 0.36999 ± 0.01973 379,921 ± 0.00000 23,514,255,340.8 ± 39,895,887,557.08404 310.17038 ± 109.96476
REFINED 14.20569 ± 0.26736 14.67801 ± 0.05755 14.42321 ± 0.06496 0.42444 ± 0.02152 0.38465 ± 0.00482 0.40001 ± 0.00541 22,721 ± 0.00000 2,127,251,420.8 ± 4,727,825,965.72182 287.14075 ± 106.06291
DistanceMatrix 14.07601 ± 0.31802 14.60251 ± 0.10019 14.37632 ± 0.06409 0.43483 ± 0.02523 0.39095 ± 0.00839 0.40391 ± 0.00532 1,306,657 ± 0.00000 1,648,572,144,089.6001 ± 2,860,193,866,394.75586 334.61430 ± 103.91823
BarGraph 14.37006 ± 0.07627 14.58942 ± 0.03359 14.35670 ± 0.03626 0.41120 ± 0.00626 0.39206 ± 0.00280 0.40554 ± 0.00301 5,417,457 ± 0.00000 1,405,065,174,595.19995 ± 3,112,648,869,247.36816 363.45893 ± 112.02614
Combination 14.28038 ± 0.06160 14.55864 ± 0.02904 14.35479 ± 0.02489 0.41853 ± 0.00501 0.39462 ± 0.00242 0.40570 ± 0.00206 14,729 ± 0.00000 30,507,467,000.4 ± 67,671,999,500.72966 341.71894 ± 121.41553
SuperTML 14.33471 ± 0.19071 14.67737 ± 0.11701 14.42643 ± 0.11644 0.41402 ± 0.01563 0.38468 ± 0.00986 0.39972 ± 0.00974 750,369 ± 0.00000 25,645,956,761.6 ± 15,726,805,509.29922 2,389.29581 ± 172.56997
FeatureWrap 14.29496 ± 0.19934 14.77070 ± 0.07971 14.81967 ± 0.08522 0.41726 ± 0.01626 0.37685 ± 0.00673 0.36656 ± 0.00728 48,337 ± 0.00000 8,641,717,884.8 ± 19,182,581,167.87682 492.14608 ± 184.11893
BIE 14.15244 ± 0.24928 14.79987 ± 0.04575 14.61196 ± 0.12369 0.42877 ± 0.01999 0.37439 ± 0.00387 0.38418 ± 0.01047 754,089 ± 0.00000 11,105,391,678,592 ± 24,719,605,984,413.71484 656.42623 ± 130.46665
CNN + MLP
Method
TINTO
IGTD
REFINED
DistanceMatrix
BarGraph
Combination
SuperTML
FeatureWrap
BIE

Pumadyn32nh

Source: OpenML · Original

Leaderboard

Family Best variant Test RMSE Test R² Train time (s) #Params FLOPs
Trees CatBoost 0.02097 ± 0.00004 0.64498 ± 0.00135 5.07097 ± 0.12914
MLP MLP 0.02233 ± 0.00010 0.59719 ± 0.00354 41.73644 ± 1.80933 49,665 ± 0.00000 98,880 ± 0.00000
ViT REFINED 0.02185 ± 0.00008 0.61439 ± 0.00293 304.25574 ± 0.63485 11,354,503 ± 0.00000 822,779,180 ± 0.00000
ViT+MLP REFINED 0.02185 ± 0.00020 0.61426 ± 0.00709 398.67869 ± 6.59992 11,339,975 ± 0.00000 7,294,636,896 ± 1,441,729,205.9538
CNN SuperTML 0.02224 ± 0.00041 0.60049 ± 0.01498 1,138.71236 ± 0.75749 771,937 ± 0.00000 4,259,639,040 ± 0.00000
CNN+MLP SuperTML 0.02254 ± 0.00014 0.58974 ± 0.00515 1,138.98998 ± 1.20643 804,961 ± 0.00000 4,259,704,704 ± 0.00000
Architecture Results
Tree Baselines
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² Train time (s) #Params FLOPs
CatBoost 0.01582 ± 0.00001 0.02058 ± 0.00004 0.02097 ± 0.00004 0.80792 ± 0.00016 0.67418 ± 0.00133 0.64498 ± 0.00135 5.07097 ± 0.12914
LightGBM 0.01771 ± 0.00003 0.02110 ± 0.00008 0.02134 ± 0.00003 0.75918 ± 0.00093 0.65733 ± 0.00272 0.63231 ± 0.00098 0.36394 ± 0.02792
XGBoost 0.01904 ± 0.00001 0.02104 ± 0.00002 0.02126 ± 0.00002 0.72162 ± 0.00028 0.65953 ± 0.00064 0.63497 ± 0.00060 1.47681 ± 0.03719
MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
MLP 0.01956 ± 0.00009 0.02224 ± 0.00014 0.02233 ± 0.00010 0.70639 ± 0.00267 0.61939 ± 0.00493 0.59719 ± 0.00354 49,665 ± 0.00000 98,880 ± 0.00000 41.73644 ± 1.80933
ViT
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 0.02239 ± 0.00036 0.02379 ± 0.00016 0.02407 ± 0.00008 0.61512 ± 0.01237 0.56450 ± 0.00589 0.53201 ± 0.00329 16,600,153 ± 0.00000 164,288,418 ± 0.00000 403.39934 ± 3.78837
IGTD 0.02482 ± 0.00133 0.02770 ± 0.00030 0.02836 ± 0.00012 0.52603 ± 0.05134 0.40978 ± 0.01275 0.35032 ± 0.00563 4,321,335 ± 0.00000 42,443,564 ± 0.00000 298.27538 ± 0.24385
REFINED 0.02113 ± 0.00029 0.02070 ± 0.00007 0.02185 ± 0.00008 0.65733 ± 0.00941 0.67046 ± 0.00238 0.61439 ± 0.00293 11,354,503 ± 0.00000 822,779,180 ± 0.00000 304.25574 ± 0.63485
DistanceMatrix 0.02414 ± 0.00072 0.02530 ± 0.00017 0.02587 ± 0.00028 0.55231 ± 0.02681 0.50772 ± 0.00673 0.45924 ± 0.01147 8,211,585 ± 0.00000 80,177,580 ± 0.00000 282.84231 ± 3.23933
BarGraph 0.02085 ± 0.00079 0.02169 ± 0.00052 0.02230 ± 0.00037 0.66587 ± 0.02565 0.63775 ± 0.01732 0.59840 ± 0.01328 8,346,497 ± 0.00000 81,331,920 ± 0.00000 343.30284 ± 29.30881
Combination 0.02088 ± 0.00063 0.02171 ± 0.00023 0.02256 ± 0.00027 0.66521 ± 0.02014 0.63735 ± 0.00778 0.58878 ± 0.00972 10,981,729 ± 0.00000 1,424,588,196 ± 0.00000 324.80838 ± 2.57464
SuperTML 0.02144 ± 0.00066 0.02119 ± 0.00027 0.02193 ± 0.00026 0.64674 ± 0.02186 0.65439 ± 0.00891 0.61166 ± 0.00933 975,649 ± 0.00000 510,261,742 ± 0.00000 359.72687 ± 6.97145
FeatureWrap 0.03487 ± 0.00010 0.03497 ± 0.00012 0.03410 ± 0.00008 0.06663 ± 0.00532 0.05901 ± 0.00618 0.06103 ± 0.00457 8,319,777 ± 0.00000 79,884,240 ± 0.00000 351.17434 ± 18.46822
BIE 0.02300 ± 0.00170 0.02463 ± 0.00178 0.02457 ± 0.00168 0.59212 ± 0.05938 0.53127 ± 0.06789 0.51071 ± 0.06812 8,493,217 ± 0.00000 285,350,020 ± 0.00000 402.58314 ± 10.93166
ViT + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 0.01967 ± 0.00079 0.02241 ± 0.00012 0.02271 ± 0.00025 0.70245 ± 0.02377 0.61350 ± 0.00409 0.58337 ± 0.00929 16,585,497 ± 0.00000 2,359,058,576 ± 466,249,889.61959 948.19912 ± 16.09877
IGTD 0.02233 ± 0.00167 0.02336 ± 0.00105 0.02336 ± 0.00095 0.61561 ± 0.05807 0.57953 ± 0.03789 0.55871 ± 0.03576 4,273,463 ± 0.00000 609,931,104 ± 120,548,219.02632 378.72084 ± 15.63163
REFINED 0.02141 ± 0.00023 0.02070 ± 0.00010 0.02185 ± 0.00020 0.64801 ± 0.00749 0.67034 ± 0.00307 0.61426 ± 0.00709 11,339,975 ± 0.00000 7,294,636,896 ± 1,441,729,205.9538 398.67869 ± 6.59992
DistanceMatrix 0.01958 ± 0.00134 0.02227 ± 0.00018 0.02290 ± 0.00034 0.70462 ± 0.04016 0.61833 ± 0.00600 0.57650 ± 0.01266 8,154,241 ± 0.00000 1,138,069,728 ± 224,930,779.78552 366.64496 ± 20.56310
BarGraph 0.02113 ± 0.00039 0.02184 ± 0.00050 0.02263 ± 0.00036 0.65709 ± 0.01279 0.63282 ± 0.01687 0.58627 ± 0.01301 8,389,249 ± 0.00000 1,154,515,072 ± 228,181,076.28208 392.98477 ± 25.46348
Combination 0.02009 ± 0.00028 0.02126 ± 0.00009 0.02219 ± 0.00022 0.68993 ± 0.00857 0.65237 ± 0.00307 0.60229 ± 0.00784 10,917,793 ± 0.00000 12,113,008,160 ± 2,394,043,443.86283 402.76591 ± 31.83774
SuperTML 0.02055 ± 0.00065 0.02129 ± 0.00033 0.02191 ± 0.00034 0.67545 ± 0.02058 0.65114 ± 0.01092 0.61229 ± 0.01194 1,094,049 ± 0.00000 4,183,851,632 ± 826,906,284.33329 427.94311 ± 6.77084
FeatureWrap 0.02040 ± 0.00095 0.02279 ± 0.00010 0.02311 ± 0.00034 0.67989 ± 0.02992 0.60037 ± 0.00334 0.56848 ± 0.01276 8,058,593 ± 0.00000 1,139,654,272 ± 225,243,952.79132 409.11364 ± 16.84657
BIE 0.01961 ± 0.00120 0.02249 ± 0.00026 0.02258 ± 0.00047 0.70390 ± 0.03674 0.61072 ± 0.00903 0.58824 ± 0.01728 8,488,993 ± 0.00000 2,808,225,440 ± 555,024,285.85178 595.30145 ± 45.64617
CNN
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 0.02170 ± 0.00068 0.02352 ± 0.00042 0.02431 ± 0.00084 0.63807 ± 0.02244 0.57441 ± 0.01520 0.52221 ± 0.03371 146,025 ± 0.00000 14,930,400 ± 0.00000 113.59447 ± 1.40437
IGTD 0.01990 ± 0.00137 0.02332 ± 0.00033 0.02404 ± 0.00027 0.69484 ± 0.04167 0.58135 ± 0.01186 0.53323 ± 0.01056 138,633 ± 0.00000 2,665,296 ± 0.00000 112.16792 ± 0.77712
REFINED 0.02033 ± 0.00044 0.02318 ± 0.00033 0.02404 ± 0.00089 0.68265 ± 0.01382 0.58668 ± 0.01185 0.53295 ± 0.03513 26,873 ± 0.00000 500,232 ± 0.00000 115.67679 ± 1.13143
DistanceMatrix 0.02227 ± 0.00095 0.02396 ± 0.00037 0.02471 ± 0.00054 0.61870 ± 0.03258 0.55838 ± 0.01347 0.50689 ± 0.02142 27,409 ± 0.00000 19,190,864 ± 0.00000 105.71885 ± 1.76016
BarGraph 0.01696 ± 0.00854 0.02249 ± 0.00061 0.02293 ± 0.00052 0.73433 ± 0.14888 0.61052 ± 0.02149 0.57509 ± 0.01944 6,591,201 ± 0.00000 648,924,672 ± 0.00000 182.02909 ± 4.87026
Combination 0.01703 ± 0.00843 0.02246 ± 0.00060 0.02320 ± 0.00070 0.73364 ± 0.14886 0.61179 ± 0.02081 0.56505 ± 0.02604 6,481,505 ± 0.00000 1,785,374,208 ± 0.00000 169.32325 ± 1.95742
SuperTML 0.02107 ± 0.00133 0.02146 ± 0.00023 0.02224 ± 0.00041 0.65795 ± 0.04197 0.64574 ± 0.00779 0.60049 ± 0.01498 771,937 ± 0.00000 4,259,639,040 ± 0.00000 1,138.71236 ± 0.75749
FeatureWrap 0.03429 ± 0.00082 0.03542 ± 0.00029 0.03464 ± 0.00027 0.09673 ± 0.04388 0.03468 ± 0.01560 0.03080 ± 0.01532 1,674,129 ± 0.00000 30,998,352 ± 0.00000 115.27792 ± 0.29258
BIE 0.00158 ± 0.00113 0.02676 ± 0.00054 0.02643 ± 0.00023 0.99730 ± 0.00392 0.44873 ± 0.02236 0.43585 ± 0.00987 417,041 ± 0.00000 133,454,208 ± 0.00000 333.18199 ± 12.26761
CNN + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 0.02153 ± 0.00058 0.02305 ± 0.00021 0.02410 ± 0.00019 0.64403 ± 0.01900 0.59111 ± 0.00751 0.53085 ± 0.00756 183,209 ± 0.00000 15,004,432 ± 0.00000 138.96872 ± 8.46889
IGTD 0.02082 ± 0.00071 0.02283 ± 0.00045 0.02352 ± 0.00037 0.66693 ± 0.02229 0.59900 ± 0.01596 0.55299 ± 0.01415 253,529 ± 0.00000 2,894,352 ± 0.00000 225.15165 ± 38.38193
REFINED 0.02077 ± 0.00109 0.02244 ± 0.00057 0.02337 ± 0.00059 0.66801 ± 0.03549 0.61247 ± 0.01998 0.55876 ± 0.02209 129,881 ± 0.00000 705,488 ± 0.00000 235.78252 ± 48.03677
DistanceMatrix 0.02025 ± 0.00099 0.02334 ± 0.00019 0.02381 ± 0.00021 0.68442 ± 0.03115 0.58096 ± 0.00682 0.54196 ± 0.00821 84,241 ± 0.00000 19,304,016 ± 0.00000 141.11054 ± 2.98111
BarGraph 0.01396 ± 0.00919 0.02259 ± 0.00019 0.02326 ± 0.00039 0.79843 ± 0.17347 0.60745 ± 0.00670 0.56282 ± 0.01456 6,500,897 ± 0.00000 648,743,936 ± 0.00000 205.01951 ± 3.11489
Combination 0.02097 ± 0.00084 0.02217 ± 0.00051 0.02301 ± 0.00068 0.66205 ± 0.02684 0.62169 ± 0.01732 0.57206 ± 0.02532 6,266,401 ± 0.00000 1,784,944,208 ± 0.00000 188.25400 ± 4.97836
SuperTML 0.02049 ± 0.00099 0.02190 ± 0.00031 0.02254 ± 0.00014 0.67709 ± 0.03193 0.63105 ± 0.01051 0.58974 ± 0.00515 804,961 ± 0.00000 4,259,704,704 ± 0.00000 1,138.98998 ± 1.20643
FeatureWrap 0.02190 ± 0.00072 0.02484 ± 0.00053 0.02482 ± 0.00064 0.63140 ± 0.02422 0.52515 ± 0.02016 0.50201 ± 0.02569 1,726,161 ± 0.00000 31,101,984 ± 0.00000 121.36724 ± 0.28997
BIE 0.01741 ± 0.00180 0.02867 ± 0.00206 0.02894 ± 0.00189 0.76523 ± 0.04553 0.36506 ± 0.09236 0.32103 ± 0.08978 460,337 ± 0.00000 133,540,448 ± 0.00000 177.56438 ± 2.37141

Student performance por

Source: OpenML · Original

Leaderboard

Family Best variant Test RMSE Test R² Train time (s) #Params FLOPs
Trees LightGBM 2.07327 ± 0.01229 0.24692 ± 0.00894 0.06854 ± 0.00324
MLP MLP 2.09287 ± 0.08028 0.23174 ± 0.05981 3.05389 ± 0.51833 292,353 ± 0.00000 583,680 ± 0.00000
ViT REFINED 2.13202 ± 0.06906 0.20300 ± 0.05223 19.78263 ± 0.04077 8,970,759 ± 0.00000 1,111,201,232 ± 0.00000
ViT+MLP REFINED 2.00620 ± 0.02164 0.29482 ± 0.01526 24.76651 ± 0.31276 8,878,343 ± 0.00000 33,044,561,088 ± 1,866,001,380.69021
CNN IGTD 2.08120 ± 0.15865 0.23765 ± 0.12046 8.71615 ± 0.05789 824,241 ± 0.00000 12,292,800 ± 0.00000
CNN+MLP REFINED 2.03476 ± 0.06501 0.27407 ± 0.04684 20.00194 ± 0.48703 6,591,281 ± 0.00000 730,020,896 ± 0.00000
Architecture Results
Tree Baselines
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² Train time (s) #Params FLOPs
CatBoost 2.14322 ± 0.04256 2.61678 ± 0.00698 2.08151 ± 0.00951 0.60506 ± 0.01581 0.27242 ± 0.00387 0.24094 ± 0.00693 12.64899 ± 0.14024
LightGBM 2.68989 ± 0.00442 2.62963 ± 0.01526 2.07327 ± 0.01229 0.37808 ± 0.00204 0.26524 ± 0.00852 0.24692 ± 0.00894 0.06854 ± 0.00324
XGBoost 2.59119 ± 0.00514 2.60717 ± 0.00659 2.07417 ± 0.01860 0.42289 ± 0.00229 0.27775 ± 0.00365 0.24625 ± 0.01354 0.15527 ± 0.00400
MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
MLP 2.20826 ± 0.92555 2.75390 ± 0.02522 2.09287 ± 0.08028 0.52195 ± 0.31138 0.19412 ± 0.01477 0.23174 ± 0.05981 292,353 ± 0.00000 583,680 ± 0.00000 3.05389 ± 0.51833
ViT
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 2.93695 ± 0.05031 2.59890 ± 0.05789 2.23585 ± 0.02876 0.25842 ± 0.02535 0.28205 ± 0.03202 0.12409 ± 0.02259 903,703 ± 0.00000 29,203,002 ± 0.00000 18.44586 ± 0.19326
IGTD 2.81884 ± 0.16402 2.77916 ± 0.02253 2.28951 ± 0.07894 0.31518 ± 0.07729 0.17928 ± 0.01333 0.08080 ± 0.06307 2,774,881 ± 0.00000 27,840,536 ± 0.00000 11.72688 ± 0.10983
REFINED 2.88697 ± 0.08463 2.64711 ± 0.04207 2.13202 ± 0.06906 0.28312 ± 0.04193 0.25531 ± 0.02359 0.20300 ± 0.05223 8,970,759 ± 0.00000 1,111,201,232 ± 0.00000 19.78263 ± 0.04077
DistanceMatrix 2.64166 ± 0.17059 2.76243 ± 0.02828 2.15614 ± 0.07647 0.39819 ± 0.07808 0.18911 ± 0.01656 0.18473 ± 0.05856 17,054,305 ± 0.00000 1,703,980,720 ± 0.00000 32.18724 ± 0.15245
BarGraph 2.75222 ± 0.17286 2.65312 ± 0.05940 2.25989 ± 0.12131 0.34687 ± 0.07891 0.25177 ± 0.03342 0.10322 ± 0.09584 1,216,353 ± 0.00000 459,910,052 ± 0.00000 12.96350 ± 0.18219
Combination 2.80817 ± 0.11109 2.69432 ± 0.05642 2.21138 ± 0.12874 0.32134 ± 0.05331 0.22840 ± 0.03260 0.14096 ± 0.09914 4,855,105 ± 0.00000 456,591,504 ± 0.00000 14.19763 ± 0.12567
SuperTML 2.84375 ± 0.12419 2.69306 ± 0.06959 2.22813 ± 0.13748 0.30384 ± 0.06039 0.22898 ± 0.04003 0.12760 ± 0.11153 1,753,089 ± 0.00000 55,688,968 ± 0.00000 18.68712 ± 0.78474
FeatureWrap 3.05272 ± 0.12647 2.81339 ± 0.16254 2.26426 ± 0.03637 0.19789 ± 0.06629 0.15674 ± 0.09718 0.10163 ± 0.02890 22,093,623 ± 0.00000 442,033,759 ± 0.00000 40.14556 ± 4.76981
BIE 2.83558 ± 0.10440 2.70644 ± 0.05184 2.32541 ± 0.10244 0.30814 ± 0.05019 0.22148 ± 0.02998 0.05117 ± 0.08415 22,192,513 ± 0.00000 2,904,925,784 ± 0.00000 50.89112 ± 0.34698
ViT + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 0.84497 ± 0.29635 2.67168 ± 0.04201 2.22408 ± 0.13201 0.93259 ± 0.04116 0.24142 ± 0.02398 0.13097 ± 0.10137 1,360,151 ± 0.00000 293,072,208 ± 57,923,481.01091 22.41009 ± 0.33038
IGTD 2.83420 ± 0.05077 2.75004 ± 0.03526 2.04088 ± 0.02291 0.30939 ± 0.02468 0.19633 ± 0.02060 0.27022 ± 0.01646 3,116,769 ± 0.00000 914,998,320 ± 80,374,409.62299 16.02527 ± 0.26102
REFINED 2.69505 ± 0.07157 2.68977 ± 0.03813 2.00620 ± 0.02164 0.37534 ± 0.03303 0.23114 ± 0.02191 0.29482 ± 0.01526 8,878,343 ± 0.00000 33,044,561,088 ± 1,866,001,380.69021 24.76651 ± 0.31276
DistanceMatrix 2.75605 ± 0.09744 2.77058 ± 0.05214 2.06605 ± 0.03636 0.34646 ± 0.04672 0.18415 ± 0.03092 0.25200 ± 0.02656 17,145,249 ± 0.00000 14,740,056,064 ± 2,913,259,375.05104 38.64666 ± 0.90085
BarGraph 2.78466 ± 0.08357 2.74530 ± 0.03297 2.04117 ± 0.01500 0.33301 ± 0.03986 0.19911 ± 0.01920 0.27005 ± 0.01072 1,436,097 ± 0.00000 17,873,390,744 ± 743,692,424.48962 18.48115 ± 0.51367
Combination 1.36122 ± 0.28026 2.68793 ± 0.03098 2.15356 ± 0.06181 0.83534 ± 0.07353 0.23224 ± 0.01782 0.18696 ± 0.04625 4,862,817 ± 0.00000 8,873,642,016 ± 779,469,997.54245 18.95864 ± 0.27732
SuperTML 2.67008 ± 0.10342 2.70077 ± 0.07558 2.06424 ± 0.05476 0.38647 ± 0.04665 0.22448 ± 0.04331 0.25307 ± 0.03928 2,078,081 ± 0.00000 1,683,872,736 ± 95,087,020.27892 21.70629 ± 1.15053
FeatureWrap 0.58956 ± 0.13245 2.68276 ± 0.05475 2.18022 ± 0.09262 0.96892 ± 0.01377 0.23502 ± 0.03111 0.16605 ± 0.06917 22,633,079 ± 0.00000 23,547,780,378 ± 979,797,629.41975 53.58027 ± 1.19315
BIE 2.71706 ± 0.11849 2.71004 ± 0.02256 2.10730 ± 0.07137 0.36449 ± 0.05558 0.21960 ± 0.01297 0.22131 ± 0.05285 22,625,345 ± 0.00000 24,682,275,008 ± 4,878,262,928.74567 57.14752 ± 1.44125
CNN
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 2.71646 ± 0.07432 2.87997 ± 0.07242 2.20393 ± 0.05426 0.36536 ± 0.03457 0.11826 ± 0.04422 0.14863 ± 0.04235 44,137 ± 0.00000 9,609,200 ± 0.00000 9.40622 ± 0.28257
IGTD 2.14493 ± 0.79970 2.77638 ± 0.04811 2.08120 ± 0.15865 0.56058 ± 0.22509 0.18077 ± 0.02852 0.23765 ± 0.12046 824,241 ± 0.00000 12,292,800 ± 0.00000 8.71615 ± 0.05789
REFINED 0.51366 ± 0.57277 2.77123 ± 0.05204 2.13354 ± 0.11906 0.95476 ± 0.08806 0.18377 ± 0.03098 0.20055 ± 0.09002 6,492,657 ± 0.00000 66,168,768 ± 0.00000 14.35458 ± 0.06314
DistanceMatrix 0.39893 ± 0.31522 2.71516 ± 0.02309 2.12103 ± 0.06746 0.97949 ± 0.03148 0.21664 ± 0.01334 0.21121 ± 0.05013 1,405,713 ± 0.00000 487,848,704 ± 0.00000 24.99695 ± 0.21563
BarGraph 2.66685 ± 0.27506 2.85222 ± 0.06208 2.32736 ± 0.10340 0.38349 ± 0.13369 0.13528 ± 0.03775 0.04956 ± 0.08450 668,033 ± 0.00000 184,843,344 ± 0.00000 20.30143 ± 0.14342
Combination 2.18546 ± 0.55208 2.84263 ± 0.09573 2.21374 ± 0.12857 0.56851 ± 0.17633 0.14063 ± 0.05734 0.13913 ± 0.09999 1,710,385 ± 0.00000 1,457,369,280 ± 0.00000 16.30842 ± 0.07185
SuperTML 2.74824 ± 0.13166 2.78930 ± 0.05693 2.25473 ± 0.07110 0.34962 ± 0.06269 0.17305 ± 0.03400 0.10865 ± 0.05721 319,761 ± 0.00000 310,244,736 ± 0.00000 19.47898 ± 0.36295
FeatureWrap 2.43107 ± 0.45570 3.04510 ± 0.10817 2.58094 ± 0.12282 0.47773 ± 0.19317 0.01375 ± 0.07003 -0.16911 ± 0.11451 3,067,097 ± 0.00000 63,097,992 ± 0.00000 23.04521 ± 0.18939
BIE 1.87327 ± 1.04213 2.77007 ± 0.08068 2.30823 ± 0.17893 0.62370 ± 0.27079 0.18413 ± 0.04725 0.06211 ± 0.14743 2,692,721 ± 0.00000 256,454,400 ± 0.00000 21.22984 ± 1.06166
CNN + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 2.62500 ± 0.28240 2.72197 ± 0.02301 2.10339 ± 0.05933 0.40224 ± 0.11990 0.21271 ± 0.01334 0.22442 ± 0.04448 537,033 ± 0.00000 116,529,336 ± 0.00000 12.84134 ± 0.07940
IGTD 1.54520 ± 0.77944 2.67039 ± 0.04854 2.16746 ± 0.10360 0.75300 ± 0.18841 0.24211 ± 0.02748 0.17547 ± 0.07799 1,066,417 ± 0.00000 140,541,632 ± 0.00000 12.30086 ± 0.17006
REFINED 0.50965 ± 0.32211 2.72013 ± 0.02272 2.03476 ± 0.06501 0.97054 ± 0.03899 0.21377 ± 0.01316 0.27407 ± 0.04684 6,591,281 ± 0.00000 730,020,896 ± 0.00000 20.00194 ± 0.48703
DistanceMatrix 1.79537 ± 0.91277 2.82054 ± 0.05529 2.20535 ± 0.11973 0.66565 ± 0.26016 0.15444 ± 0.03341 0.14593 ± 0.09290 1,836,817 ± 0.00000 488,709,824 ± 0.00000 27.69409 ± 1.14331
BarGraph 1.08430 ± 0.10465 2.70800 ± 0.09488 2.09846 ± 0.08224 0.89819 ± 0.01955 0.22005 ± 0.05495 0.22759 ± 0.06083 1,040,449 ± 0.00000 2,041,457,440 ± 0.00000 30.53304 ± 1.71425
Combination 1.06648 ± 0.58434 2.78186 ± 0.05249 2.21351 ± 0.13429 0.87876 ± 0.13340 0.17750 ± 0.03113 0.13910 ± 0.10258 1,969,073 ± 0.00000 1,457,885,888 ± 0.00000 18.47078 ± 0.45905
SuperTML 2.71874 ± 0.06915 2.73325 ± 0.02812 2.05940 ± 0.01953 0.36434 ± 0.03263 0.20615 ± 0.01637 0.25693 ± 0.01407 656,721 ± 0.00000 310,917,504 ± 0.00000 21.61322 ± 0.57559
FeatureWrap 1.61312 ± 0.65180 2.76541 ± 0.05730 2.08629 ± 0.08131 0.74712 ± 0.17348 0.18715 ± 0.03383 0.23653 ± 0.05844 3,502,169 ± 0.00000 63,967,080 ± 0.00000 24.74905 ± 0.23222
BIE 1.02344 ± 0.60519 2.78509 ± 0.03986 2.30793 ± 0.04552 0.88478 ± 0.09724 0.17568 ± 0.02354 0.06655 ± 0.03657 3,000,625 ± 0.00000 257,069,440 ± 0.00000 21.66396 ± 0.61913

Superconductivity

Source: OpenML · Original

Leaderboard

Family Best variant Test RMSE Test R² Train time (s) #Params FLOPs
Trees XGBoost 9.39012 ± 0.01083 0.92444 ± 0.00017 14.42918 ± 0.71470
MLP MLP 13.02278 ± 0.08713 0.85467 ± 0.00195 38.31988 ± 0.27649 206,337 ± 0.00000 411,776 ± 0.00000
ViT Combination 9.85932 ± 0.03877 0.91670 ± 0.00065 1,081.16444 ± 256.86060 13,374,487 ± 0.00000 585,567,985,104.19995 ± 1,302,618,243,023.18262
CNN TINTO 9.48401 ± 0.05426 0.92292 ± 0.00088 577.38758 ± 197.83984 10,741,857 ± 0.00000 710,159,859,724.80005 ± 1,271,392,566,165.7981
Architecture Results
Tree Baselines
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² Train time (s) #Params FLOPs
CatBoost 4.53931 ± 0.01369 9.27537 ± 0.06568 9.50490 ± 0.06107 0.98249 ± 0.00011 0.92601 ± 0.00105 0.92258 ± 0.00100 35.48475 ± 0.25031
LightGBM 5.75896 ± 0.03346 9.46416 ± 0.07228 9.78001 ± 0.12346 0.97182 ± 0.00033 0.92297 ± 0.00117 0.91803 ± 0.00207 1.28021 ± 0.04398
XGBoost 4.83724 ± 0.01133 9.06668 ± 0.03218 9.39012 ± 0.01083 0.98012 ± 0.00009 0.92931 ± 0.00050 0.92444 ± 0.00017 14.42918 ± 0.71470
MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
MLP 12.18590 ± 0.07631 12.35558 ± 0.05771 13.02278 ± 0.08713 0.87381 ± 0.00158 0.86872 ± 0.00123 0.85467 ± 0.00195 206,337 ± 0.00000 411,776 ± 0.00000 38.31988 ± 0.27649
ViT
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 7.42554 ± 0.13475 10.17726 ± 0.06878 10.23188 ± 0.14155 0.95313 ± 0.00171 0.91092 ± 0.00120 0.91028 ± 0.00247 11,288,857 ± 0.00000 106,213,732 ± 0.00000 424.71950 ± 6.58643
IGTD 7.20714 ± 0.10199 9.98521 ± 0.11446 10.02393 ± 0.11961 0.95585 ± 0.00124 0.91425 ± 0.00197 0.91389 ± 0.00206 3,641,431 ± 0.00000 35,974,944 ± 0.00000 490.10305 ± 2.71046
REFINED 6.81035 ± 0.43307 9.98932 ± 0.18200 10.14475 ± 0.17488 0.96046 ± 0.00519 0.91417 ± 0.00313 0.91179 ± 0.00305 3,035,031 ± 0.00000 59,100,759 ± 0.00000 228.89744 ± 8.49279
DistanceMatrix 6.56761 ± 0.30220 9.79910 ± 0.15459 9.91098 ± 0.08857 0.96328 ± 0.00343 0.91741 ± 0.00260 0.91582 ± 0.00150 20,136,423 ± 0.00000 20,714,923,423,581.60156 ± 43,332,096,532,550.5625 1,470.66296 ± 6.31309
BarGraph 6.14691 ± 0.09702 9.60107 ± 0.15526 9.95331 ± 0.12401 0.96789 ± 0.00102 0.92071 ± 0.00257 0.91510 ± 0.00211 21,098,263 ± 0.00000 400,874,159 ± 0.00000 637.27321 ± 1.90689
Combination 6.14398 ± 0.14685 9.41024 ± 0.04133 9.85932 ± 0.03877 0.96791 ± 0.00155 0.92385 ± 0.00067 0.91670 ± 0.00065 13,374,487 ± 0.00000 585,567,985,104.19995 ± 1,302,618,243,023.18262 1,081.16444 ± 256.86060
SuperTML 4.55318 ± 0.38427 10.55164 ± 0.18643 10.95439 ± 0.18499 0.98228 ± 0.00301 0.90423 ± 0.00340 0.89715 ± 0.00349 13,033,665 ± 0.00000 413,926,829,673.59998 ± 907,899,654,168.94824 3,195.55674 ± 161.28588
FeatureWrap 12.76631 ± 0.43769 16.11097 ± 0.41295 20.59555 ± 1.42934 0.86138 ± 0.00966 0.77667 ± 0.01144 0.63513 ± 0.05126 26,463,961 ± 0.00000 820,659,602,644.80005 ± 1,828,045,572,040.96899 951.38445 ± 310.15833
BIE 4.29548 ± 0.22002 10.70148 ± 0.08250 11.03662 ± 0.22029 0.98429 ± 0.00162 0.90151 ± 0.00152 0.89559 ± 0.00420 35,879,911 ± 0.00000 27,587,790,024,715.39844 ± 61,453,258,210,193.89844 2,437.28664 ± 6.34257
ViT + MLP
Method
TINTO
IGTD
REFINED
DistanceMatrix
BarGraph
Combination
SuperTML
FeatureWrap
BIE
CNN
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 6.26595 ± 0.15267 9.62326 ± 0.07660 9.48401 ± 0.05426 0.96662 ± 0.00165 0.92036 ± 0.00127 0.92292 ± 0.00088 10,741,857 ± 0.00000 710,159,859,724.80005 ± 1,271,392,566,165.7981 577.38758 ± 197.83984
IGTD 6.19039 ± 0.22334 9.61344 ± 0.14718 9.85135 ± 0.11225 0.96740 ± 0.00233 0.92051 ± 0.00244 0.91683 ± 0.00189 4,507,673 ± 0.00000 309,129,657,280 ± 574,781,614,714.94189 509.33440 ± 180.92264
REFINED 5.94252 ± 0.19473 9.57097 ± 0.09981 9.57201 ± 0.11834 0.96997 ± 0.00197 0.92122 ± 0.00165 0.92148 ± 0.00194 1,654,833 ± 0.00000 166,022,193,100.79999 ± 280,016,749,242.1524 422.80904 ± 162.80911
DistanceMatrix 5.80147 ± 0.04815 9.53799 ± 0.14256 9.60631 ± 0.06818 0.97140 ± 0.00047 0.92175 ± 0.00233 0.92092 ± 0.00112 8,309,345 ± 0.00000 2,461,664,039,412.7998 ± 4,017,310,686,211.29297 1,089.20098 ± 310.99029
BarGraph 5.22966 ± 0.16871 9.79060 ± 0.06058 9.96486 ± 0.06396 0.97674 ± 0.00149 0.91756 ± 0.00102 0.91491 ± 0.00109 11,044,833 ± 0.00000 4,525,419,867,219.2002 ± 7,390,524,080,872.92383 866.04780 ± 203.89004
Combination 5.34537 ± 0.19032 9.55318 ± 0.07219 9.94313 ± 0.10081 0.97569 ± 0.00173 0.92151 ± 0.00118 0.91528 ± 0.00172 9,819,433 ± 0.00000 849,233,239,970.40002 ± 1,160,163,613,041.34424 535.82400 ± 72.16412
SuperTML 4.29412 ± 0.25653 10.48723 ± 0.08078 10.59245 ± 0.09414 0.98429 ± 0.00193 0.90541 ± 0.00146 0.90385 ± 0.00171 4,634,473 ± 0.00000 709,217,228,032 ± 1,564,581,382,185.67017 2,983.68161 ± 201.08062
FeatureWrap 13.77206 ± 2.12998 15.71511 ± 0.35545 21.06315 ± 0.83208 0.83574 ± 0.05462 0.78753 ± 0.00962 0.61936 ± 0.03016 5,460,577 ± 0.00000 1,030,081,193,107.19995 ± 1,820,098,138,320.47534 512.76986 ± 183.44309
BIE 4.55087 ± 0.51946 10.98117 ± 0.14843 11.21765 ± 0.17455 0.98222 ± 0.00407 0.89629 ± 0.00279 0.89215 ± 0.00336 11,563,073 ± 0.00000 15,283,835,263,308.80078 ± 21,448,598,033,060.51562 1,266.2391 ± 0.28499
CNN + MLP
Method
TINTO
IGTD
REFINED
DistanceMatrix
BarGraph
Combination
SuperTML
FeatureWrap
BIE