Regression Benchmarks

Dataset Overview

Dataset Instances Features Numeric Categorical Target
Geographical origin of music 1059 116 116 0 latitude
Student performance por 649 30 13 17 G3

Quick Check

Dataset Type Family / Variant Test RMSE Test R²
Geographical origin of music Best classical Trees / CatBoost 16.09875 ± 0.27347 0.28649 ± 0.02426
Best transformed CNN / REFINED 15.02703 ± 0.62945 0.37760 ± 0.05210
Student performance por Best classical Trees / LightGBM 2.07327 ± 0.01229 0.24692 ± 0.00894
Best transformed ViT+MLP / REFINED 2.00620 ± 0.02164 0.29482 ± 0.01526

Geographical origin of music

Source: OpenML · Original

Leaderboard

Family Best variant Test RMSE Test R² Train time (s) #Params FLOPs
Trees CatBoost 16.09875 ± 0.27347 0.28649 ± 0.02426 5.40574 ± 0.01840
MLP MLP 16.82875 ± 0.58908 0.21974 ± 0.05508 6.15275 ± 0.54803 224,257 447,616
ViT BarGraph 16.91933 ± 0.91566 0.21024 ± 0.08402 59.57013 ± 7.93472 6,900,631 223,482,786
ViT+MLP Combination 16.10768 ± 0.12356 0.28583 ± 0.01098 52.62258 ± 1.54688 9,753,271 6,869,758,986
CNN REFINED 15.02703 ± 0.62945 0.37760 ± 0.05210 17.44302 ± 0.11142 3,738,049 120,195,072
CNN+MLP REFINED 15.29549 ± 0.55394 0.35539 ± 0.04664 18.31227 ± 0.12764 3,843,265 120,404,960
Architecture Results
Tree Baselines
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² Train time (s) #Params FLOPs
CatBoost 0.05557 ± 0.00772 16.06202 ± 0.18918 16.09875 ± 0.27347 0.99999 ± 0.00000 0.34184 ± 0.01551 0.28649 ± 0.02426 5.40574 ± 0.01840
XGBoost 0.33621 ± 0.00319 16.37622 ± 0.32143 16.30701 ± 0.36834 0.99965 ± 0.00001 0.31570 ± 0.02669 0.26779 ± 0.03284 1.55595 ± 0.01979
LightGBM 0.16624 ± 0.03577 16.21642 ± 0.25397 16.98768 ± 0.27991 0.99991 ± 0.00004 0.32907 ± 0.02109 0.20553 ± 0.02621 0.28268 ± 0.01466
MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
MLP 10.69368 ± 1.91871 15.51013 ± 0.46948 16.82875 ± 0.58908 0.63755 ± 0.13473 0.38591 ± 0.03751 0.21974 ± 0.05508 224,257 447,616 6.15275 ± 0.54803
ViT
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 13.70347 ± 2.51237 17.03049 ± 0.48423 18.52677 ± 0.28237 0.40415 ± 0.21213 0.25968 ± 0.04228 0.05509 ± 0.02877 5,811,351 190,865,164 46.01703 ± 4.92198
IGTD 4.38130 ± 2.75908 15.54277 ± 0.44909 17.99486 ± 0.78529 0.92187 ± 0.10129 0.38336 ± 0.03551 0.10737 ± 0.07837 18,975,257 187,320,724 98.01576 ± 3.22877
REFINED 12.73110 ± 3.20448 17.47121 ± 0.58240 17.68148 ± 0.54004 0.47380 ± 0.24188 0.22068 ± 0.05152 0.13886 ± 0.05282 4,072,967 1,237,334,920 50.97426 ± 1.32109
DistanceMatrix 11.53372 ± 2.91193 16.06591 ± 0.18580 17.57294 ± 0.84132 0.56799 ± 0.18100 0.34152 ± 0.01526 0.14848 ± 0.08357 24,509,305 228,074,320 51.79272 ± 2.42832
BarGraph 11.66409 ± 1.05832 17.42123 ± 0.35203 16.91933 ± 0.91566 0.57684 ± 0.07260 0.22557 ± 0.03103 0.21024 ± 0.08402 6,900,631 223,482,786 59.57013 ± 7.93472
Combination 11.55673 ± 2.67506 16.69437 ± 0.38998 17.58062 ± 1.12846 0.56962 ± 0.17848 0.28876 ± 0.03341 0.14649 ± 0.11207 9,560,503 314,769,189 43.79353 ± 0.88633
SuperTML 15.00412 ± 1.59699 19.24220 ± 0.30550 19.04030 ± 0.12776 0.29808 ± 0.14780 0.05533 ± 0.03011 0.00213 ± 0.01335 5,039,297 168,272,312 71.57072 ± 0.39260
FeatureWrap 15.36428 ± 0.55970 18.35840 ± 0.28669 18.77633 ± 0.23099 0.26981 ± 0.05265 0.14012 ± 0.02685 0.02952 ± 0.02381 2,223,271 22,210,476 32.03794 ± 0.18428
BIE 17.83038 ± 0.36524 19.74467 ± 0.09284 19.09284 ± 0.02706 0.01731 ± 0.04006 0.01506 ± 0.06072 -0.00336 ± 0.00284 20,250,457 190,315,952 50.08791 ± 1.41411
ViT + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 11.27870 ± 0.31786 15.67644 ± 0.16878 16.16954 ± 0.32113 0.60668 ± 0.02228 0.37307 ± 0.01343 0.28015 ± 0.02850 5,800,087 1,888,211,296 45.43299 ± 1.59490
IGTD 11.49398 ± 1.82290 15.90038 ± 0.40134 17.39535 ± 0.77172 0.58357 ± 0.13235 0.35476 ± 0.03226 0.16582 ± 0.07515 19,047,193 2,692,426,912 54.17769 ± 0.81412
REFINED 10.88294 ± 0.70574 15.46777 ± 0.30883 16.18275 ± 0.41792 0.63280 ± 0.04735 0.38951 ± 0.02433 0.27881 ± 0.03704 4,107,015 22,952,799,504 41.30654 ± 0.10477
DistanceMatrix 10.69971 ± 1.13039 15.59085 ± 0.23527 16.26941 ± 0.43020 0.64309 ± 0.07573 0.37984 ± 0.01857 0.27105 ± 0.03890 23,906,425 3,014,266,752 55.16052 ± 0.52730
BarGraph 8.79558 ± 1.46960 15.62614 ± 0.41414 16.46694 ± 0.35351 0.75562 ± 0.08199 0.37679 ± 0.03273 0.25338 ± 0.03206 6,862,999 7,575,609,720 69.28047 ± 1.21371
Combination 12.21999 ± 1.18632 15.81405 ± 0.25097 16.10768 ± 0.12356 0.53511 ± 0.08945 0.36195 ± 0.02026 0.28583 ± 0.01098 9,753,271 6,869,758,986 52.62258 ± 1.54688
SuperTML 7.93617 ± 1.83935 15.33343 ± 0.54976 16.71844 ± 0.29170 0.79702 ± 0.09977 0.39964 ± 0.04318 0.23050 ± 0.02715 5,360,865 1,577,520,064 81.53160 ± 1.05610
FeatureWrap 9.21742 ± 0.92978 15.51625 ± 0.51796 16.67730 ± 0.72491 0.73534 ± 0.05056 0.38533 ± 0.04116 0.23331 ± 0.06575 2,517,607 731,278,872 41.72618 ± 1.19304
BIE 11.16109 ± 1.23325 15.92937 ± 0.75222 16.55521 ± 0.17354 0.61133 ± 0.08502 0.35158 ± 0.06225 0.24557 ± 0.01578 19,967,065 8,862,326,592 67.69650 ± 3.22348
CNN
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 11.42706 ± 5.63796 17.50269 ± 0.46048 18.69147 ± 1.01999 0.51795 ± 0.33917 0.21813 ± 0.04067 0.03610 ± 0.10680 1,064,865 112,489,856 22.07763 ± 0.29004
IGTD 3.40363 ± 1.57712 15.76505 ± 0.74902 17.51502 ± 0.49999 0.95806 ± 0.03678 0.36488 ± 0.05951 0.15508 ± 0.04785 283,521 12,525,632 23.86034 ± 0.15064
REFINED 1.45952 ± 0.31864 15.26121 ± 0.31388 15.02703 ± 0.62945 0.99317 ± 0.00279 0.40569 ± 0.02440 0.37760 ± 0.05210 3,738,049 120,195,072 17.44302 ± 0.11142
DistanceMatrix 5.26771 ± 4.56349 15.72246 ± 0.50765 16.66955 ± 0.89513 0.86278 ± 0.18246 0.36892 ± 0.04026 0.23341 ± 0.08207 1,203,209 137,155,464 29.85507 ± 1.14905
BarGraph 5.41248 ± 4.20403 17.10003 ± 0.67535 17.98593 ± 0.71919 0.86579 ± 0.16321 0.25317 ± 0.05967 0.10848 ± 0.07187 86,545 90,185,728 28.58858 ± 0.19662
Combination 2.21433 ± 1.04818 15.95586 ± 0.17249 16.76053 ± 0.27255 0.98213 ± 0.01559 0.35052 ± 0.01405 0.22664 ± 0.02509 2,976,641 991,275,840 27.91533 ± 0.61219
SuperTML 14.58648 ± 1.90400 18.78454 ± 0.51314 19.16329 ± 0.47282 0.33361 ± 0.17012 0.09937 ± 0.04895 -0.01126 ± 0.04976 277,457 279,559,680 34.35937 ± 0.34717
FeatureWrap 15.37580 ± 1.24064 18.89610 ± 0.46891 19.02199 ± 0.44515 0.26569 ± 0.11599 0.08874 ± 0.04542 0.00364 ± 0.04706 36,769 3,266,144 13.14731 ± 0.89654
BIE 4.88207 ± 4.02859 19.64237 ± 0.61272 19.34129 ± 0.51306 0.88623 ± 0.13971 0.01506 ± 0.06072 -0.03022 ± 0.05498 19,046,097 1,580,752,896 38.22191 ± 0.87412
CNN + MLP
Method Train RMSE Val RMSE Test RMSE Train R² Val R² Test R² #Params FLOPs Train time (s)
TINTO 10.11680 ± 2.57885 15.85264 ± 0.61112 17.19357 ± 0.86346 0.66731 ± 0.15259 0.35819 ± 0.04981 0.18469 ± 0.08119 1,354,913 113,068,800 24.04323 ± 0.43570
IGTD 3.37414 ± 3.68402 16.04367 ± 0.78891 17.85496 ± 0.89318 0.93127 ± 0.13106 0.34214 ± 0.06378 0.12078 ± 0.08993 505,473 12,968,736 23.35832 ± 0.13444
REFINED 3.90924 ± 2.74580 15.06717 ± 0.42406 15.29549 ± 0.55394 0.93414 ± 0.07172 0.42054 ± 0.03240 0.35539 ± 0.04664 3,843,265 120,404,960 18.31227 ± 0.12764
DistanceMatrix 2.46382 ± 1.43092 16.01207 ± 0.36239 16.19995 ± 0.35934 0.97618 ± 0.02643 0.34573 ± 0.02997 0.27738 ± 0.03198 1,472,777 137,693,672 30.08562 ± 0.68356
BarGraph 13.46694 ± 0.92622 17.15620 ± 0.49037 17.43264 ± 0.60262 0.43749 ± 0.07690 0.24870 ± 0.04300 0.16275 ± 0.05797 318,865 90,649,472 31.54327 ± 0.74361
Combination 2.69676 ± 0.48891 15.55850 ± 0.28827 16.38854 ± 0.14145 0.97694 ± 0.00809 0.38235 ± 0.02296 0.26070 ± 0.01276 3,013,761 991,349,664 28.90632 ± 1.47219
SuperTML 12.44674 ± 1.87392 16.39167 ± 0.44488 17.21217 ± 0.44550 0.51262 ± 0.14688 0.31422 ± 0.03778 0.18414 ± 0.04263 542,865 280,089,472 35.44523 ± 0.53667
FeatureWrap 11.59757 ± 3.70233 17.73740 ± 0.23284 18.04943 ± 0.44827 0.55051 ± 0.21409 0.19735 ± 0.02110 0.10287 ± 0.04485 257,745 3,707,280 13.81799 ± 1.11630
BIE 3.94150 ± 0.84846 18.73255 ± 0.55031 18.62305 ± 0.62363 0.95022 ± 0.01925 0.10427 ± 0.05202 0.04456 ± 0.06396 18,945,553 1,580,551,520 40.39863 ± 0.22127

Student performance por

Source: OpenML · Original

Leaderboard

Family Best variant Test RMSE (↓) Test R² (↑) Train time (s) #Params FLOPs
Trees LightGBM 2.07327 ± 0.01229 0.24692 ± 0.00894 0.06854 ± 0.00324
MLP MLP 2.09287 ± 0.08028 0.23174 ± 0.05981 3.05389 ± 0.51833 292,353 583,680
ViT (only) REFINED 2.13202 ± 0.06906 0.20300 ± 0.05223 19.78263 ± 0.04077 8,970,759 1,111,201,232
ViT+MLP REFINED 2.00620 ± 0.02164 0.29482 ± 0.01526 24.76651 ± 0.31276 8,878,343 33,044,561,088
CNN IGTD 2.08120 ± 0.15865 0.23765 ± 0.12046 8.71615 ± 0.05789 824,241 12,292,800
CNN+MLP REFINED 2.03476 ± 0.06501 0.27407 ± 0.04684 20.00194 ± 0.48703 6,591,281 730,020,896
Architecture Results
Tree Baselines
Method Test RMSE Test R² Train time (s) #Params FLOPs
LightGBM 2.07327 ± 0.01229 0.24692 ± 0.00894 0.06854 ± 0.00324
XGBoost 2.07417 ± 0.01860 0.24625 ± 0.01354 0.15527 ± 0.00400
CatBoost 2.08151 ± 0.00951 0.24094 ± 0.00693 12.64899 ± 0.14024
MLP
Train loss Val loss Test loss Train RMSE Val RMSE Test RMSE Test R² Total params FLOPs
5.52015 ± 3.62724 5.85536 ± 0.08859 4.64651 ± 0.62714 2.20826 ± 0.92555 2.75390 ± 0.02521 2.09287 ± 0.08028 0.23174 ± 0.05981 292,353 583,680
ViT
Method Test RMSE Test R² Train time (s) #Params FLOPs
TINTO 2.23586 ± 0.02876 0.12409 ± 0.02259 18.44586 ± 0.19326 903,703 29,203,002
IGTD 2.28951 ± 0.07894 0.08080 ± 0.06307 11.72688 ± 0.10983 2,774,881 27,840,536
REFINED 2.13202 ± 0.06906 0.20300 ± 0.05223 19.78263 ± 0.04077 8,970,759 1,111,201,232
DistanceMatrix 2.15614 ± 0.07647 0.18473 ± 0.05856 32.18724 ± 0.15245 17,054,305 1,703,980,720
BarGraph 2.25989 ± 0.12131 0.10322 ± 0.09584 12.96351 ± 0.18219 1,216,353 459,910,052
Combination 2.21138 ± 0.12874 0.14096 ± 0.09914 14.19763 ± 0.12567 4,855,105 456,591,504
SuperTML 2.22813 ± 0.13748 0.12761 ± 0.11154 18.68712 ± 0.78474 1,753,089 55,688,968
FeatureWrap 2.26426 ± 0.03637 0.10163 ± 0.02890 40.14557 ± 4.76981 22,093,623 442,033,759
BIE 2.32541 ± 0.10244 0.05117 ± 0.08415 50.89112 ± 0.34698 22,192,513 2,904,925,784
ViT + MLP
Method Test RMSE Test R² Train time (s) #Params FLOPs
TINTO 2.22408 ± 0.13201 0.13097 ± 0.10137 22.41009 ± 0.33038 1,360,151 293,072,208
IGTD 2.04088 ± 0.02291 0.27022 ± 0.01646 16.02527 ± 0.26102 3,116,769 914,998,320
REFINED 2.00620 ± 0.02164 0.29482 ± 0.01526 24.76651 ± 0.31276 8,878,343 33,044,561,088
DistanceMatrix 2.06605 ± 0.03636 0.25200 ± 0.02656 38.64666 ± 0.90085 17,145,249 14,740,056,064
BarGraph 2.04117 ± 0.01500 0.27005 ± 0.01072 18.48115 ± 0.51367 1,436,097 17,873,390,744
Combination 2.15356 ± 0.06181 0.18696 ± 0.04625 18.95864 ± 0.27732 4,862,817 8,873,642,016
SuperTML 2.06424 ± 0.05476 0.25307 ± 0.03928 21.70629 ± 1.15053 2,078,081 1,683,872,736
FeatureWrap 2.18022 ± 0.09262 0.16605 ± 0.06917 53.58027 ± 1.19315 22,633,079 23,547,780,378
BIE 2.10730 ± 0.07137 0.22131 ± 0.05285 57.14752 ± 1.44125 22,625,345 24,682,275,008
CNN
Method Test RMSE Test R² Train time (s) #Params FLOPs
TINTO 2.20393 ± 0.05426 0.14863 ± 0.04235 9.40622 ± 0.28257 44,137 9,609,200
IGTD 2.08120 ± 0.15865 0.23765 ± 0.12046 8.71615 ± 0.05789 824,241 12,292,800
REFINED 2.13354 ± 0.11906 0.20055 ± 0.09003 14.35458 ± 0.06314 6,492,657 66,168,768
DistanceMatrix 2.12103 ± 0.06746 0.21121 ± 0.05013 24.99695 ± 0.21563 1,405,713 487,848,704
BarGraph 2.32736 ± 0.10341 0.04956 ± 0.08450 20.30143 ± 0.14342 668,033 184,843,344
Combination 2.21374 ± 0.12857 0.13913 ± 0.09999 16.30842 ± 0.07185 1,710,385 1,457,369,280
SuperTML 2.25473 ± 0.07110 0.10865 ± 0.05721 19.47898 ± 0.36295 319,761 310,244,736
FeatureWrap 2.58094 ± 0.12282 -0.16911 ± 0.11451 23.04521 ± 0.18939 3,067,097 63,097,992
BIE 2.30823 ± 0.17893 0.06211 ± 0.14743 21.22984 ± 1.06166 2,692,721 256,454,400
CNN + MLP
Method Test RMSE Test R² Train time (s) #Params FLOPs
TINTO 2.10339 ± 0.05933 0.22442 ± 0.04448 12.84134 ± 0.07940 537,033 116,529,336
IGTD 2.16746 ± 0.10360 0.17547 ± 0.07799 12.30086 ± 0.17006 1,066,417 140,541,632
REFINED 2.03476 ± 0.06501 0.27407 ± 0.04684 20.00194 ± 0.48703 6,591,281 730,020,896
DistanceMatrix 2.20535 ± 0.11973 0.14593 ± 0.09290 27.69409 ± 1.14331 1,836,817 488,709,824
BarGraph 2.09846 ± 0.08224 0.22759 ± 0.06083 30.53304 ± 1.71425 1,040,449 2,041,457,440
Combination 2.21351 ± 0.13429 0.13910 ± 0.10258 18.47078 ± 0.45905 1,969,073 1,457,885,888
SuperTML 2.05941 ± 0.01953 0.25693 ± 0.01407 21.61322 ± 0.57559 656,721 310,917,504
FeatureWrap 2.08629 ± 0.08131 0.23653 ± 0.05844 24.74906 ± 0.23222 3,502,169 63,967,080
BIE 2.30793 ± 0.04552 0.06655 ± 0.03657 21.66396 ± 0.61913 3,000,625 257,069,440