Regression Benchmarks
Dataset Overview
| Dataset | Instances | Features | Numeric | Categorical | Target |
|---|---|---|---|---|---|
| Boston housing | 506 | 13 | 11 | 2 | MEDV |
| California housing | 20640 | 8 | 8 | 0 | medianHouseValue |
| Geographical origin of music | 1059 | 116 | 116 | 0 | latitude |
| Health insurance | 22272 | 11 | 4 | 7 | whrswk |
| Pumadyn32nh | 8192 | 32 | 32 | 0 | thetadd6 |
| Student performance por | 649 | 30 | 13 | 17 | G3 |
| Superconductivity | 21263 | 81 | 81 | 0 | critical_temp |
Quick Check
| Dataset | Type | Family / Variant | Test RMSE | Test R² |
|---|---|---|---|---|
| Boston housing | Best classical | Trees / LightGBM | 2.64293 ± 0.08667 | 0.92436 ± 0.00503 |
| Best transformed | CNN+MLP / DistanceMatrix | 2.39441 ± 0.14017 | 0.93780 ± 0.00728 | |
| California housing | Best classical | Trees / XGBoost | 0.43989 ± 0.00403 | 0.85687 ± 0.00263 |
| Best transformed | CNN / BIE | 0.44662 ± 0.00312 | 0.85247 ± 0.00205 | |
| Geographical origin of music | Best classical | Trees / CatBoost | 16.09875 ± 0.27347 | 0.28649 ± 0.02426 |
| Best transformed | CNN / REFINED | 15.02703 ± 0.62945 | 0.37760 ± 0.05210 | |
| Health insurance | Best classical | Trees / CatBoost | 14.24579 ± 0.00935 | 0.41469 ± 0.00077 |
| Best transformed | ViT / REFINED | 14.31386 ± 0.04021 | 0.40908 ± 0.00332 | |
| Pumadyn32nh | Best classical | Trees / CatBoost | 0.02097 ± 0.00004 | 0.64498 ± 0.00135 |
| Best transformed | ViT / REFINED | 0.02185 ± 0.00008 | 0.61439 ± 0.00293 | |
| Student performance por | Best classical | Trees / LightGBM | 2.07327 ± 0.01229 | 0.24692 ± 0.00894 |
| Best transformed | ViT+MLP / REFINED | 2.00620 ± 0.02164 | 0.29482 ± 0.01526 | |
| Superconductivity | Best classical | Trees / XGBoost | 9.39012 ± 0.01083 | 0.92444 ± 0.00017 |
| Best transformed | CNN / TINTO | 9.48401 ± 0.05426 | 0.92292 ± 0.00088 |
Boston housing
Source: Boston Housing (1978)
Leaderboard
| Family | Best variant | Test RMSE | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | LightGBM | 2.64293 ± 0.08667 | 0.92436 ± 0.00503 | 0.10473 ± 0.01010 | — | — |
| MLP | MLP | 3.01003 ± 0.21439 | 0.90158 ± 0.01395 | 4.23418 ± 0.73795 | 274,945 ± 0.00000 | 548,864 ± 0.00000 |
| ViT | REFINED | 2.57398 ± 0.21155 | 0.92793 ± 0.01177 | 29.41662 ± 0.19323 | 3,041,671 ± 0.00000 | 158,169,495 ± 0.00000 |
| ViT+MLP | Combination | 2.70160 ± 0.25837 | 0.92046 ± 0.01509 | 71.95644 ± 1.05371 | 16,894,937 ± 0.00000 | 23,145,874,912 ± 4,574,605,197.45434 |
| CNN | REFINED | 2.46685 ± 0.26438 | 0.93356 ± 0.01460 | 14.23677 ± 0.05346 | 192,825 ± 0.00000 | 3,284,400 ± 0.00000 |
| CNN+MLP | DistanceMatrix | 2.39441 ± 0.14017 | 0.93780 ± 0.00728 | 19.18030 ± 0.52748 | 623,881 ± 0.00000 | 123,184,480 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.27800 ± 0.10580 | 3.20287 ± 0.11571 | 2.73597 ± 0.08619 | 0.99896 ± 0.00083 | 0.87688 ± 0.00878 | 0.91895 ± 0.00514 | 2.99438 ± 0.03236 | — | — |
| LightGBM | 1.20464 ± 0.01442 | 3.25573 ± 0.10716 | 2.64293 ± 0.08667 | 0.98241 ± 0.00042 | 0.87281 ± 0.00851 | 0.92436 ± 0.00503 | 0.10473 ± 0.01010 | — | — |
| XGBoost | 1.23884 ± 0.02319 | 3.13241 ± 0.04323 | 2.79232 ± 0.04993 | 0.98140 ± 0.00069 | 0.88234 ± 0.00326 | 0.91562 ± 0.00301 | 0.44749 ± 0.00514 | — | — |
MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| MLP | 2.53665 ± 0.20504 | 3.49185 ± 0.03450 | 3.01003 ± 0.21439 | 0.92162 ± 0.01234 | 0.85380 ± 0.00288 | 0.90158 ± 0.01395 | 274,945 ± 0.00000 | 548,864 ± 0.00000 | 4.23418 ± 0.73795 |
ViT
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 1.93251 ± 0.33082 | 3.49700 ± 0.08594 | 2.98962 ± 0.25167 | 0.95368 ± 0.01645 | 0.85331 ± 0.00728 | 0.90275 ± 0.01619 | 3,260,577 ± 0.00000 | 163,838,060 ± 0.00000 | 20.66712 ± 0.51800 |
| IGTD | 9.11893 ± 0.00307 | 9.13305 ± 0.00026 | 9.63393 ± 0.00221 | -0.00768 ± 0.00068 | -0.00005 ± 0.00006 | -0.00413 ± 0.00046 | 512,743 ± 0.00000 | 27,155,815 ± 0.00000 | 23.42475 ± 1.20051 |
| REFINED | 1.50936 ± 0.30300 | 3.14998 ± 0.08060 | 2.57398 ± 0.21155 | 0.97150 ± 0.01229 | 0.88098 ± 0.00614 | 0.92793 ± 0.01177 | 3,041,671 ± 0.00000 | 158,169,495 ± 0.00000 | 29.41662 ± 0.19323 |
| DistanceMatrix | 1.47646 ± 0.47992 | 3.50178 ± 0.12724 | 3.54344 ± 0.17961 | 0.97135 ± 0.01783 | 0.85283 ± 0.01058 | 0.86388 ± 0.01358 | 14,234,905 ± 0.00000 | 2,308,646,228 ± 0.00000 | 67.32671 ± 15.22236 |
| BarGraph | 1.77073 ± 0.69186 | 3.24519 ± 0.07944 | 2.96469 ± 0.53319 | 0.95736 ± 0.03105 | 0.87368 ± 0.00617 | 0.90245 ± 0.03758 | 12,071,289 ± 0.00000 | 1,891,104,100 ± 0.00000 | 47.49440 ± 0.75261 |
| Combination | 1.80507 ± 0.46080 | 3.21779 ± 0.19262 | 2.74446 ± 0.16067 | 0.95846 ± 0.02236 | 0.87550 ± 0.01513 | 0.91829 ± 0.00950 | 16,580,473 ± 0.00000 | 2,754,888,892 ± 0.00000 | 60.89286 ± 0.79736 |
| SuperTML | 2.03421 ± 1.03974 | 4.45341 ± 0.56251 | 5.36638 ± 0.31885 | 0.93937 ± 0.06139 | 0.75918 ± 0.06113 | 0.68756 ± 0.03674 | 10,514,945 ± 0.00000 | 1,297,985,304 ± 0.00000 | 39.77714 ± 3.71406 |
| FeatureWrap | 4.57558 ± 0.30882 | 5.69138 ± 0.10345 | 6.32727 ± 0.19251 | 0.74537 ± 0.03399 | 0.61154 ± 0.01406 | 0.56656 ± 0.02669 | 943,513 ± 0.00000 | 19,181,964 ± 0.00000 | 29.16736 ± 0.36974 |
| BIE | 2.26520 ± 0.41759 | 4.88408 ± 0.42985 | 5.31738 ± 0.37801 | 0.93613 ± 0.02537 | 0.71223 ± 0.05027 | 0.69287 ± 0.04324 | 7,099,777 ± 0.00000 | 864,935,572 ± 0.00000 | 31.56232 ± 3.19591 |
ViT + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 1.95366 ± 0.31369 | 3.27767 ± 0.10241 | 2.90662 ± 0.33039 | 0.95279 ± 0.01463 | 0.87110 ± 0.00805 | 0.90765 ± 0.02163 | 3,628,321 ± 0.00000 | 1,516,589,920 ± 299,742,401.47828 | 22.65244 ± 0.35614 |
| IGTD | 2.32634 ± 0.45024 | 3.51752 ± 0.06167 | 2.93851 ± 0.38052 | 0.93245 ± 0.02650 | 0.85162 ± 0.00522 | 0.90533 ± 0.02602 | 812,583 ± 0.00000 | 577,654,110 ± 50,741,741.31549 | 26.84440 ± 0.62645 |
| REFINED | 1.66692 ± 0.24461 | 3.19159 ± 0.12588 | 2.71211 ± 0.15036 | 0.96575 ± 0.01046 | 0.87772 ± 0.00975 | 0.92023 ± 0.00883 | 3,349,447 ± 0.00000 | 5,141,137,540 ± 290,316,149.83205 | 41.29689 ± 0.36799 |
| DistanceMatrix | 1.92433 ± 0.54507 | 3.49446 ± 0.19839 | 3.34396 ± 0.35498 | 0.95225 ± 0.02390 | 0.85322 ± 0.01669 | 0.87793 ± 0.02537 | 14,467,513 ± 0.00000 | 43,607,930,472 ± 3,830,566,231.60504 | 73.97143 ± 3.95586 |
| BarGraph | 2.00807 ± 0.36445 | 3.33908 ± 0.19814 | 3.13040 ± 0.46134 | 0.94985 ± 0.01879 | 0.86595 ± 0.01576 | 0.89214 ± 0.03165 | 11,797,241 ± 0.00000 | 15,869,381,664 ± 3,136,461,944.79706 | 54.16998 ± 1.31253 |
| Combination | 1.68597 ± 0.44069 | 3.21787 ± 0.15816 | 2.70160 ± 0.25837 | 0.96367 ± 0.01971 | 0.87562 ± 0.01204 | 0.92046 ± 0.01509 | 16,894,937 ± 0.00000 | 23,145,874,912 ± 4,574,605,197.45434 | 71.95644 ± 1.05371 |
| SuperTML | 1.96240 ± 0.13583 | 3.52269 ± 0.07090 | 2.73376 ± 0.13026 | 0.95315 ± 0.00648 | 0.85117 ± 0.00599 | 0.91900 ± 0.00778 | 10,368,001 ± 0.00000 | 24,675,806,448 ± 2,167,548,652.14303 | 45.29493 ± 1.17064 |
| FeatureWrap | 2.40244 ± 0.25579 | 3.51804 ± 0.04989 | 2.91964 ± 0.12322 | 0.92942 ± 0.01529 | 0.85159 ± 0.00420 | 0.90765 ± 0.00791 | 1,204,921 ± 0.00000 | 775,564,048 ± 43,795,515.41107 | 41.53267 ± 0.58403 |
| BIE | 2.03324 ± 0.11257 | 3.50626 ± 0.09037 | 2.78704 ± 0.09112 | 0.94978 ± 0.00543 | 0.85253 ± 0.00764 | 0.91589 ± 0.00556 | 6,843,905 ± 0.00000 | 7,346,259,872 ± 1,451,932,092.43856 | 50.24351 ± 0.52854 |
CNN
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 1.34596 ± 0.40460 | 3.24922 ± 0.12831 | 3.21047 ± 0.37006 | 0.97646 ± 0.01350 | 0.87327 ± 0.01010 | 0.88730 ± 0.02593 | 74,193 ± 0.00000 | 9,381,952 ± 0.00000 | 20.19407 ± 1.37805 |
| IGTD | 2.59679 ± 0.64853 | 3.40121 ± 0.06535 | 2.86891 ± 0.35293 | 0.91421 ± 0.03901 | 0.86126 ± 0.00532 | 0.90988 ± 0.02135 | 440,377 ± 0.00000 | 8,526,440 ± 0.00000 | 18.95521 ± 0.12599 |
| REFINED | 1.10799 ± 0.32747 | 3.16947 ± 0.07643 | 2.46685 ± 0.26438 | 0.98408 ± 0.00954 | 0.87951 ± 0.00585 | 0.93356 ± 0.01460 | 192,825 ± 0.00000 | 3,284,400 ± 0.00000 | 14.23677 ± 0.05346 |
| DistanceMatrix | 1.15015 ± 0.18339 | 3.18025 ± 0.15685 | 2.50715 ± 0.09029 | 0.98364 ± 0.00525 | 0.87850 ± 0.01182 | 0.93193 ± 0.00494 | 185,353 ± 0.00000 | 122,308,640 ± 0.00000 | 18.11340 ± 0.76780 |
| BarGraph | 1.36435 ± 0.42157 | 3.40128 ± 0.14756 | 2.57906 ± 0.11596 | 0.97572 ± 0.01488 | 0.86109 ± 0.01224 | 0.92792 ± 0.00659 | 4,517,969 ± 0.00000 | 1,276,193,664 ± 0.00000 | 23.68178 ± 0.48813 |
| Combination | 1.07358 ± 0.30007 | 3.21128 ± 0.13433 | 2.63395 ± 0.15525 | 0.98516 ± 0.00682 | 0.87619 ± 0.01046 | 0.92473 ± 0.00911 | 9,952,017 ± 0.00000 | 8,098,979,136 ± 0.00000 | 34.41181 ± 0.25650 |
| SuperTML | 0.80803 ± 0.34971 | 4.01001 ± 0.14316 | 4.40619 ± 0.21669 | 0.99090 ± 0.00702 | 0.80701 ± 0.01384 | 0.78955 ± 0.02032 | 10,729,409 ± 0.00000 | 3,039,419,264 ± 0.00000 | 35.81777 ± 0.39223 |
| FeatureWrap | 3.49106 ± 0.44523 | 4.21044 ± 0.27441 | 6.18150 ± 0.37800 | 0.85039 ± 0.03802 | 0.78673 ± 0.02836 | 0.58537 ± 0.05072 | 154,961 ± 0.00000 | 2,986,320 ± 0.00000 | 19.31483 ± 0.15387 |
| BIE | 2.61601 ± 0.74975 | 5.84682 ± 0.31769 | 6.00553 ± 0.34949 | 0.91162 ± 0.05373 | 0.58918 ± 0.04365 | 0.60875 ± 0.04584 | 1,713,897 ± 0.00000 | 42,145,024 ± 0.00000 | 17.52854 ± 0.69925 |
CNN + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 1.00499 ± 0.18957 | 3.33411 ± 0.15143 | 2.80304 ± 0.19099 | 0.98741 ± 0.00490 | 0.86650 ± 0.01227 | 0.91468 ± 0.01137 | 755,025 ± 0.00000 | 10,741,920 ± 0.00000 | 20.57700 ± 0.04900 |
| IGTD | 1.91775 ± 0.87132 | 3.31963 ± 0.12105 | 2.64527 ± 0.58132 | 0.94807 ± 0.05127 | 0.86774 ± 0.00984 | 0.92137 ± 0.03789 | 919,625 ± 0.00000 | 9,483,560 ± 0.00000 | 20.53250 ± 0.03646 |
| REFINED | 1.08777 ± 0.12727 | 3.17508 ± 0.18180 | 2.52415 ± 0.15201 | 0.98550 ± 0.00356 | 0.87882 ± 0.01413 | 0.93087 ± 0.00827 | 543,129 ± 0.00000 | 3,983,920 ± 0.00000 | 15.40566 ± 0.02158 |
| DistanceMatrix | 1.09828 ± 0.22947 | 3.11373 ± 0.11421 | 2.39441 ± 0.14017 | 0.98487 ± 0.00660 | 0.88364 ± 0.00856 | 0.93780 ± 0.00728 | 623,881 ± 0.00000 | 123,184,480 ± 0.00000 | 19.18030 ± 0.52748 |
| BarGraph | 1.21987 ± 0.29213 | 3.35928 ± 0.07035 | 2.71507 ± 0.11511 | 0.98114 ± 0.00891 | 0.86466 ± 0.00563 | 0.92013 ± 0.00680 | 4,695,697 ± 0.00000 | 1,276,548,448 ± 0.00000 | 24.80602 ± 0.15945 |
| Combination | 1.31655 ± 0.40520 | 3.19004 ± 0.12060 | 2.65254 ± 0.16080 | 0.97740 ± 0.01219 | 0.87785 ± 0.00942 | 0.92366 ± 0.00940 | 9,992,017 ± 0.00000 | 8,099,058,752 ± 0.00000 | 38.09345 ± 0.57019 |
| SuperTML | 1.30682 ± 0.39233 | 3.50697 ± 0.14106 | 3.44490 ± 0.28056 | 0.97781 ± 0.01313 | 0.85235 ± 0.01205 | 0.87093 ± 0.02102 | 10,767,809 ± 0.00000 | 3,039,495,696 ± 0.00000 | 45.59449 ± 2.34726 |
| FeatureWrap | 1.89755 ± 0.42813 | 3.32663 ± 0.07192 | 2.95132 ± 0.30706 | 0.95459 ± 0.02022 | 0.86727 ± 0.00576 | 0.90495 ± 0.02093 | 568,513 ± 0.00000 | 3,812,240 ± 0.00000 | 26.58122 ± 0.89657 |
| BIE | 1.41576 ± 0.31580 | 3.89415 ± 0.16937 | 3.70350 ± 0.41509 | 0.97474 ± 0.00997 | 0.81791 ± 0.01586 | 0.85012 ± 0.03325 | 2,363,273 ± 0.00000 | 43,442,560 ± 0.00000 | 19.26801 ± 1.32583 |
California housing
Leaderboard
| Family | Best variant | Test RMSE | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | XGBoost | 0.43989 ± 0.00403 | 0.85687 ± 0.00263 | 1.77672 ± 0.09260 | — | — |
| MLP | MLP | 0.48063 ± 0.00318 | 0.82914 ± 0.00226 | 32.84561 ± 4.31202 | 267,777 ± 0.00000 | 534,528 ± 0.00000 |
| ViT | SuperTML | 0.46974 ± 0.00584 | 0.83678 ± 0.00406 | 3,945.05697 ± 7.98396 | 20,544,577 ± 0.00000 | 8,297,965,816 ± 0.00000 |
| ViT+MLP | SuperTML | 0.46976 ± 0.01030 | 0.83673 ± 0.00718 | 3,826.40757 ± 6.33717 | 20,501,569 ± 0.00000 | 67,793,230,784 ± 13,398,813,701.18015 |
| CNN | BIE | 0.44662 ± 0.00312 | 0.85247 ± 0.00205 | 1,412.74217 ± 1.22171 | 9,703,809 ± 0.00000 | 11,479,253,760 ± 0.00000 |
| CNN+MLP | SuperTML | 0.44877 ± 0.00787 | 0.85101 ± 0.00523 | 1,041.1302 ± 6.74585 | 10,748,017 ± 0.00000 | 2,931,497,536 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.38883 ± 0.00063 | 0.46611 ± 0.00213 | 0.44749 ± 0.00144 | 0.88624 ± 0.00037 | 0.83570 ± 0.00150 | 0.85189 ± 0.00095 | 4.40361 ± 0.25380 | — | — |
| LightGBM | 0.34418 ± 0.00287 | 0.45971 ± 0.00735 | 0.44134 ± 0.00771 | 0.91087 ± 0.00149 | 0.84015 ± 0.00514 | 0.85591 ± 0.00506 | 0.53835 ± 0.15180 | — | — |
| XGBoost | 0.15339 ± 0.00078 | 0.45610 ± 0.00391 | 0.43989 ± 0.00403 | 0.98230 ± 0.00018 | 0.84267 ± 0.00270 | 0.85687 ± 0.00263 | 1.77672 ± 0.09260 | — | — |
MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.45728 ± 0.00309 | 0.49768 ± 0.00339 | 0.48063 ± 0.00318 | 0.84266 ± 0.00213 | 0.81268 ± 0.00255 | 0.82914 ± 0.00226 | 267,777 ± 0.00000 | 534,528 ± 0.00000 | 32.84561 ± 4.31202 |
ViT
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.61452 ± 0.01092 | 0.67810 ± 0.00610 | 0.64259 ± 0.00535 | 0.71580 ± 0.01016 | 0.65225 ± 0.00629 | 0.69459 ± 0.00510 | 11,232,121 ± 0.00000 | 108,435,870 ± 0.00000 | 152.55714 ± 1.35583 |
| IGTD | 1.15301 ± 0.00003 | 1.14998 ± 0.00002 | 1.16281 ± 0.00001 | -0.00026 ± 0.00005 | -0.00008 ± 0.00003 | -0.00005 ± 0.00002 | 5,623,111 ± 0.00000 | 112,844,007 ± 0.00000 | 244.20150 ± 0.26949 |
| REFINED | 0.49388 ± 0.01815 | 0.58730 ± 0.00350 | 0.55546 ± 0.00741 | 0.81628 ± 0.01344 | 0.73916 ± 0.00311 | 0.77177 ± 0.00607 | 29,768,263 ± 0.00000 | 582,613,719 ± 0.00000 | 347.38482 ± 0.74021 |
| DistanceMatrix | 0.57667 ± 0.02208 | 0.62189 ± 0.01604 | 0.59709 ± 0.01012 | 0.74950 ± 0.01922 | 0.70738 ± 0.01509 | 0.73626 ± 0.00895 | 13,164,103 ± 0.00000 | 1,006,315,932 ± 0.00000 | 582.92142 ± 1.39248 |
| BarGraph | 0.76060 ± 0.00642 | 0.77849 ± 0.00347 | 0.76262 ± 0.00537 | 0.56471 ± 0.00737 | 0.54168 ± 0.00409 | 0.56984 ± 0.00607 | 4,282,777 ± 0.00000 | 552,650,732 ± 0.00000 | 276.27179 ± 1.85934 |
| Combination | 0.50753 ± 0.00676 | 0.57846 ± 0.00394 | 0.56286 ± 0.00440 | 0.80617 ± 0.00515 | 0.74695 ± 0.00344 | 0.76567 ± 0.00367 | 8,363,737 ± 0.00000 | 1,327,060,508 ± 0.00000 | 665.79443 ± 12.26785 |
| SuperTML | 0.30560 ± 0.05360 | 0.48128 ± 0.01008 | 0.46974 ± 0.00584 | 0.92800 ± 0.02454 | 0.82477 ± 0.00737 | 0.83678 ± 0.00406 | 20,544,577 ± 0.00000 | 8,297,965,816 ± 0.00000 | 3,945.05697 ± 7.98396 |
| FeatureWrap | 0.73306 ± 0.00395 | 0.79687 ± 0.00374 | 0.72596 ± 0.00532 | 0.59567 ± 0.00435 | 0.51978 ± 0.00451 | 0.61019 ± 0.00571 | 9,881,593 ± 0.00000 | 96,348,000 ± 0.00000 | 309.49389 ± 2.01000 |
| BIE | 0.36140 ± 0.13995 | 0.54439 ± 0.02087 | 0.52315 ± 0.01736 | 0.88994 ± 0.06953 | 0.77562 ± 0.01716 | 0.79740 ± 0.01342 | 8,180,225 ± 0.00000 | 1,050,607,440 ± 0.00000 | 534.41748 ± 2.41966 |
ViT + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.45674 ± 0.01856 | 0.50312 ± 0.01007 | 0.49053 ± 0.01151 | 0.84284 ± 0.01308 | 0.80851 ± 0.00775 | 0.82196 ± 0.00846 | 11,166,297 ± 0.00000 | 1,547,193,712 ± 305,791,006.96316 | 195.80453 ± 8.04050 |
| IGTD | 0.44018 ± 0.00216 | 0.49436 ± 0.00251 | 0.48557 ± 0.00336 | 0.85421 ± 0.00143 | 0.81518 ± 0.00187 | 0.82561 ± 0.00241 | 5,907,207 ± 0.00000 | 2,868,051,006 ± 251,932,600.68048 | 273.95670 ± 10.23985 |
| REFINED | 0.49616 ± 0.06657 | 0.53301 ± 0.04684 | 0.51819 ± 0.04558 | 0.81211 ± 0.05092 | 0.78382 ± 0.03844 | 0.80017 ± 0.03550 | 29,355,847 ± 0.00000 | 6,521,062,584 ± 1,288,838,158.12144 | 426.45587 ± 6.52916 |
| DistanceMatrix | 0.45873 ± 0.01869 | 0.50332 ± 0.01002 | 0.48512 ± 0.00773 | 0.84146 ± 0.01325 | 0.80836 ± 0.00772 | 0.82590 ± 0.00560 | 13,433,031 ± 0.00000 | 8,953,046,752 ± 1,769,501,233.39329 | 640.70717 ± 6.26998 |
| BarGraph | 0.46115 ± 0.00951 | 0.50180 ± 0.00456 | 0.48732 ± 0.00523 | 0.83995 ± 0.00669 | 0.80956 ± 0.00348 | 0.82434 ± 0.00379 | 3,629,433 ± 0.00000 | 10,406,511,576 ± 914,118,863.2519 | 290.97938 ± 5.03423 |
| Combination | 0.45835 ± 0.02473 | 0.50601 ± 0.01339 | 0.49449 ± 0.01299 | 0.84157 ± 0.01759 | 0.80626 ± 0.01038 | 0.81905 ± 0.00965 | 8,344,665 ± 0.00000 | 11,140,806,368 ± 2,201,895,193.36175 | 690.97560 ± 4.01270 |
| SuperTML | 0.28491 ± 0.08209 | 0.47589 ± 0.00321 | 0.46976 ± 0.01030 | 0.93487 ± 0.03562 | 0.82873 ± 0.00231 | 0.83673 ± 0.00718 | 20,501,569 ± 0.00000 | 67,793,230,784 ± 13,398,813,701.18015 | 3,826.40757 ± 6.33717 |
| FeatureWrap | 0.44808 ± 0.00268 | 0.49684 ± 0.00235 | 0.48778 ± 0.00450 | 0.84894 ± 0.00181 | 0.81332 ± 0.00176 | 0.82401 ± 0.00325 | 9,868,409 ± 0.00000 | 1,385,440,768 ± 273,821,774.38331 | 352.41515 ± 7.03545 |
| BIE | 0.44728 ± 0.02423 | 0.49988 ± 0.01102 | 0.48701 ± 0.01109 | 0.84912 ± 0.01688 | 0.81096 ± 0.00845 | 0.82451 ± 0.00808 | 8,349,761 ± 0.00000 | 8,927,987,328 ± 1,764,548,429.85005 | 587.75184 ± 4.40892 |
CNN
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.56667 ± 0.01547 | 0.65894 ± 0.00063 | 0.62572 ± 0.00551 | 0.75826 ± 0.01312 | 0.67164 ± 0.00063 | 0.71041 ± 0.00513 | 11,020,865 ± 0.00000 | 414,831,744 ± 0.00000 | 175.04771 ± 5.54457 |
| IGTD | 0.40991 ± 0.03802 | 0.52349 ± 0.00403 | 3.14827 ± 2.10974 | 0.87271 ± 0.02464 | 0.79275 ± 0.00319 | -8.96428 ± 11.03792 | 2,673,489 ± 0.00000 | 48,097,808 ± 0.00000 | 91.82369 ± 3.08409 |
| REFINED | 0.48096 ± 0.02209 | 0.59928 ± 0.00618 | 0.56371 ± 0.00368 | 0.82566 ± 0.01639 | 0.72838 ± 0.00559 | 0.76497 ± 0.00308 | 1,317,361 ± 0.00000 | 22,116,784 ± 0.00000 | 76.05887 ± 0.69582 |
| DistanceMatrix | 0.44172 ± 0.05716 | 0.58654 ± 0.01273 | 0.56900 ± 0.01700 | 0.85123 ± 0.03660 | 0.73974 ± 0.01141 | 0.76038 ± 0.01452 | 6,857,993 ± 0.00000 | 1,746,277,344 ± 0.00000 | 416.32115 ± 0.45420 |
| BarGraph | 0.75427 ± 0.00182 | 0.77748 ± 0.00095 | 0.75653 ± 0.00102 | 0.57194 ± 0.00206 | 0.54288 ± 0.00112 | 0.57670 ± 0.00115 | 26,209 ± 0.00000 | 981,248 ± 0.00000 | 70.14003 ± 0.61764 |
| Combination | 0.47767 ± 0.03061 | 0.56438 ± 0.00552 | 0.55096 ± 0.01109 | 0.82776 ± 0.02251 | 0.75910 ± 0.00472 | 0.77542 ± 0.00905 | 5,920,849 ± 0.00000 | 1,336,089,664 ± 0.00000 | 302.19510 ± 0.27329 |
| SuperTML | 0.01378 ± 0.00479 | 0.47443 ± 0.00373 | 0.45087 ± 0.00592 | 0.99984 ± 0.00012 | 0.82977 ± 0.00268 | 0.84963 ± 0.00397 | 10,645,233 ± 0.00000 | 2,931,292,480 ± 0.00000 | 1,031.57336 ± 17.72613 |
| FeatureWrap | 0.68080 ± 0.01616 | 0.69323 ± 0.00730 | 0.67850 ± 0.01115 | 0.65112 ± 0.01665 | 0.63655 ± 0.00764 | 0.65944 ± 0.01126 | 37,993 ± 0.00000 | 458,436 ± 0.00000 | 70.02285 ± 0.28436 |
| BIE | 0.02773 ± 0.01455 | 0.46976 ± 0.00469 | 0.44662 ± 0.00312 | 0.99929 ± 0.00063 | 0.83311 ± 0.00333 | 0.85247 ± 0.00205 | 9,703,809 ± 0.00000 | 11,479,253,760 ± 0.00000 | 1,412.74217 ± 1.22171 |
CNN + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.42472 ± 0.00838 | 0.51350 ± 0.00796 | 0.50416 ± 0.00665 | 0.86423 ± 0.00541 | 0.80055 ± 0.00620 | 0.81198 ± 0.00498 | 10,725,505 ± 0.00000 | 414,241,120 ± 0.00000 | 175.60802 ± 2.91739 |
| IGTD | 0.38630 ± 0.03014 | 0.50047 ± 0.01254 | 1.42743 ± 0.59698 | 0.88718 ± 0.01817 | 0.81049 ± 0.00948 | -0.71785 ± 1.50272 | 2,941,265 ± 0.00000 | 48,632,336 ± 0.00000 | 105.17529 ± 11.15271 |
| REFINED | 0.38848 ± 0.04257 | 0.53286 ± 0.00510 | 0.51555 ± 0.00643 | 0.88536 ± 0.02445 | 0.78526 ± 0.00413 | 0.80340 ± 0.00491 | 1,535,089 ± 0.00000 | 22,551,536 ± 0.00000 | 83.51049 ± 4.73300 |
| DistanceMatrix | 0.42044 ± 0.03069 | 0.49810 ± 0.00470 | 0.49232 ± 0.00715 | 0.86643 ± 0.01931 | 0.81236 ± 0.00353 | 0.82071 ± 0.00520 | 6,648,841 ± 0.00000 | 1,745,859,040 ± 0.00000 | 421.32265 ± 4.17418 |
| BarGraph | 0.43451 ± 0.00282 | 0.49357 ± 0.00311 | 0.48584 ± 0.00419 | 0.85794 ± 0.00184 | 0.81577 ± 0.00232 | 0.82541 ± 0.00302 | 326,273 ± 0.00000 | 45,517,184 ± 0.00000 | 158.89147 ± 1.23917 |
| Combination | 0.40111 ± 0.03899 | 0.50397 ± 0.00353 | 0.49452 ± 0.00943 | 0.87804 ± 0.02303 | 0.80792 ± 0.00269 | 0.81908 ± 0.00687 | 5,662,801 ± 0.00000 | 1,335,573,568 ± 0.00000 | 307.60273 ± 0.98531 |
| SuperTML | 0.06800 ± 0.02138 | 0.47212 ± 0.00471 | 0.44877 ± 0.00787 | 0.99625 ± 0.00236 | 0.83142 ± 0.00337 | 0.85101 ± 0.00523 | 10,748,017 ± 0.00000 | 2,931,497,536 ± 0.00000 | 1,041.1302 ± 6.74585 |
| FeatureWrap | 0.42977 ± 0.01018 | 0.50982 ± 0.00162 | 0.49455 ± 0.00228 | 0.86097 ± 0.00665 | 0.80344 ± 0.00125 | 0.81911 ± 0.00167 | 340,281 ± 0.00000 | 1,061,952 ± 0.00000 | 82.07914 ± 0.56705 |
| BIE | 0.04854 ± 0.02221 | 0.48339 ± 0.00198 | 0.45310 ± 0.00374 | 0.99793 ± 0.00203 | 0.82329 ± 0.00145 | 0.84815 ± 0.00252 | 10,430,465 ± 0.00000 | 11,480,705,536 ± 0.00000 | 1,423.09332 ± 1.15410 |
Geographical origin of music
Leaderboard
| Family | Best variant | Test RMSE | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | CatBoost | 16.09875 ± 0.27347 | 0.28649 ± 0.02426 | 5.40574 ± 0.01840 | — | — |
| MLP | MLP | 16.82875 ± 0.58908 | 0.21974 ± 0.05508 | 6.15275 ± 0.54803 | 224,257 ± 0.00000 | 447,616 ± 0.00000 |
| ViT | BarGraph | 16.91933 ± 0.91566 | 0.21024 ± 0.08402 | 59.57013 ± 7.93472 | 6,900,631 ± 0.00000 | 223,482,786 ± 0.00000 |
| ViT+MLP | Combination | 16.10768 ± 0.12356 | 0.28583 ± 0.01098 | 52.62258 ± 1.54688 | 9,753,271 ± 0.00000 | 6,869,758,986 ± 603,446,815.89358 |
| CNN | REFINED | 15.02703 ± 0.62945 | 0.37760 ± 0.05210 | 17.44302 ± 0.11142 | 3,738,049 ± 0.00000 | 120,195,072 ± 0.00000 |
| CNN+MLP | REFINED | 15.29549 ± 0.55394 | 0.35539 ± 0.04664 | 18.31227 ± 0.12764 | 3,843,265 ± 0.00000 | 120,404,960 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.05557 ± 0.00772 | 16.06202 ± 0.18918 | 16.09875 ± 0.27347 | 0.99999 ± 0.00000 | 0.34184 ± 0.01551 | 0.28649 ± 0.02426 | 5.40574 ± 0.01840 | — | — |
| LightGBM | 0.16624 ± 0.03577 | 16.21642 ± 0.25397 | 16.98768 ± 0.27991 | 0.99991 ± 0.00004 | 0.32907 ± 0.02109 | 0.20553 ± 0.02620 | 0.28268 ± 0.01466 | — | — |
| XGBoost | 0.33621 ± 0.00319 | 16.37622 ± 0.32143 | 16.30701 ± 0.36834 | 0.99965 ± 0.00001 | 0.31570 ± 0.02669 | 0.26778 ± 0.03284 | 1.55595 ± 0.01979 | — | — |
MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| MLP | 10.69368 ± 1.91871 | 15.51013 ± 0.46948 | 16.82875 ± 0.58908 | 0.63755 ± 0.13473 | 0.38591 ± 0.03751 | 0.21974 ± 0.05508 | 224,257 ± 0.00000 | 447,616 ± 0.00000 | 6.15275 ± 0.54803 |
ViT
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 13.70347 ± 2.51237 | 17.03049 ± 0.48423 | 18.52677 ± 0.28237 | 0.40415 ± 0.21213 | 0.25968 ± 0.04228 | 0.05509 ± 0.02876 | 5,811,351 ± 0.00000 | 190,865,164 ± 0.00000 | 46.01703 ± 4.92198 |
| IGTD | 4.38130 ± 2.75908 | 15.54277 ± 0.44909 | 17.99486 ± 0.78529 | 0.92187 ± 0.10129 | 0.38336 ± 0.03551 | 0.10737 ± 0.07837 | 18,975,257 ± 0.00000 | 187,320,724 ± 0.00000 | 98.01576 ± 3.22877 |
| REFINED | 12.73110 ± 3.20448 | 17.47121 ± 0.58240 | 17.68148 ± 0.54004 | 0.47380 ± 0.24188 | 0.22068 ± 0.05152 | 0.13886 ± 0.05282 | 4,072,967 ± 0.00000 | 1,237,334,920 ± 0.00000 | 50.97426 ± 1.32109 |
| DistanceMatrix | 11.53372 ± 2.91193 | 16.06591 ± 0.18580 | 17.57294 ± 0.84132 | 0.56799 ± 0.18100 | 0.34152 ± 0.01526 | 0.14847 ± 0.08357 | 24,509,305 ± 0.00000 | 228,074,320 ± 0.00000 | 51.79272 ± 2.42832 |
| BarGraph | 11.66409 ± 1.05832 | 17.42122 ± 0.35203 | 16.91933 ± 0.91566 | 0.57684 ± 0.07260 | 0.22557 ± 0.03103 | 0.21024 ± 0.08402 | 6,900,631 ± 0.00000 | 223,482,786 ± 0.00000 | 59.57013 ± 7.93472 |
| Combination | 11.55673 ± 2.67506 | 16.69437 ± 0.38998 | 17.58062 ± 1.12846 | 0.56962 ± 0.17848 | 0.28876 ± 0.03341 | 0.14649 ± 0.11207 | 9,560,503 ± 0.00000 | 314,769,189 ± 0.00000 | 43.79353 ± 0.88633 |
| SuperTML | 15.00412 ± 1.59699 | 19.24220 ± 0.30550 | 19.04030 ± 0.12776 | 0.29807 ± 0.14780 | 0.05533 ± 0.03011 | 0.00213 ± 0.01335 | 5,039,297 ± 0.00000 | 168,272,312 ± 0.00000 | 71.57072 ± 0.39260 |
| FeatureWrap | 15.36428 ± 0.55970 | 18.35840 ± 0.28669 | 18.77633 ± 0.23099 | 0.26981 ± 0.05265 | 0.14012 ± 0.02685 | 0.02952 ± 0.02381 | 2,223,271 ± 0.00000 | 22,210,476 ± 0.00000 | 32.03794 ± 0.18428 |
| BIE | 17.83038 ± 0.36524 | 19.74467 ± 0.09284 | 19.09284 ± 0.02706 | 0.01731 ± 0.04006 | 0.00553 ± 0.00933 | -0.00335 ± 0.00284 | 20,250,457 ± 0.00000 | 190,315,952 ± 0.00000 | 50.08791 ± 1.41411 |
ViT + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 11.27870 ± 0.31786 | 15.67644 ± 0.16878 | 16.16954 ± 0.32113 | 0.60668 ± 0.02228 | 0.37307 ± 0.01343 | 0.28014 ± 0.02850 | 5,800,087 ± 0.00000 | 1,888,211,296 ± 373,190,524.93865 | 45.43299 ± 1.59490 |
| IGTD | 11.49398 ± 1.82290 | 15.90038 ± 0.40134 | 17.39535 ± 0.77172 | 0.58357 ± 0.13235 | 0.35476 ± 0.03226 | 0.16581 ± 0.07515 | 19,047,193 ± 0.00000 | 2,692,426,912 ± 532,137,592.21586 | 54.17768 ± 0.81412 |
| REFINED | 10.88294 ± 0.70574 | 15.46777 ± 0.30883 | 16.18275 ± 0.41792 | 0.63280 ± 0.04735 | 0.38951 ± 0.02433 | 0.27881 ± 0.03704 | 4,107,015 ± 0.00000 | 22,952,799,504 ± 2,016,197,919.71731 | 41.30654 ± 0.10477 |
| DistanceMatrix | 10.69971 ± 1.13039 | 15.59085 ± 0.23527 | 16.26941 ± 0.43020 | 0.64309 ± 0.07573 | 0.37984 ± 0.01857 | 0.27105 ± 0.03890 | 23,906,425 ± 0.00000 | 3,014,266,752 ± 595,746,775.72737 | 55.16051 ± 0.52730 |
| BarGraph | 8.79557 ± 1.46960 | 15.62614 ± 0.41414 | 16.46694 ± 0.35351 | 0.75562 ± 0.08199 | 0.37679 ± 0.03272 | 0.25338 ± 0.03206 | 6,862,999 ± 0.00000 | 7,575,609,720 ± 427,788,953.20912 | 69.28047 ± 1.21371 |
| Combination | 12.21999 ± 1.18632 | 15.81405 ± 0.25097 | 16.10768 ± 0.12356 | 0.53511 ± 0.08945 | 0.36195 ± 0.02026 | 0.28583 ± 0.01098 | 9,753,271 ± 0.00000 | 6,869,758,986 ± 603,446,815.89358 | 52.62258 ± 1.54688 |
| SuperTML | 7.93616 ± 1.83935 | 15.33343 ± 0.54975 | 16.71844 ± 0.29170 | 0.79702 ± 0.09977 | 0.39964 ± 0.04318 | 0.23050 ± 0.02715 | 5,360,865 ± 0.00000 | 1,577,520,064 ± 311,784,778.55341 | 81.53160 ± 1.05610 |
| FeatureWrap | 9.21742 ± 0.92978 | 15.51625 ± 0.51796 | 16.67730 ± 0.72491 | 0.73534 ± 0.05056 | 0.38532 ± 0.04116 | 0.23331 ± 0.06575 | 2,517,607 ± 0.00000 | 731,278,872 ± 64,236,301.11885 | 41.72618 ± 1.19304 |
| BIE | 11.16109 ± 1.23325 | 15.92937 ± 0.75222 | 16.55521 ± 0.17354 | 0.61133 ± 0.08502 | 0.35158 ± 0.06225 | 0.24557 ± 0.01578 | 19,967,065 ± 0.00000 | 8,862,326,592 ± 500,448,882.12496 | 67.69650 ± 3.22348 |
CNN
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 11.42706 ± 5.63796 | 17.50269 ± 0.46048 | 18.69147 ± 1.01999 | 0.51795 ± 0.33917 | 0.21813 ± 0.04067 | 0.03610 ± 0.10680 | 1,064,865 ± 0.00000 | 112,489,856 ± 0.00000 | 22.07763 ± 0.29004 |
| IGTD | 3.40363 ± 1.57712 | 15.76505 ± 0.74902 | 17.51502 ± 0.49999 | 0.95805 ± 0.03678 | 0.36488 ± 0.05951 | 0.15508 ± 0.04785 | 283,521 ± 0.00000 | 12,525,632 ± 0.00000 | 23.86034 ± 0.15064 |
| REFINED | 1.45952 ± 0.31864 | 15.26121 ± 0.31388 | 15.02703 ± 0.62945 | 0.99317 ± 0.00279 | 0.40569 ± 0.02440 | 0.37760 ± 0.05210 | 3,738,049 ± 0.00000 | 120,195,072 ± 0.00000 | 17.44302 ± 0.11142 |
| DistanceMatrix | 5.26771 ± 4.56349 | 15.72246 ± 0.50765 | 16.66954 ± 0.89513 | 0.86278 ± 0.18246 | 0.36891 ± 0.04026 | 0.23341 ± 0.08207 | 1,203,209 ± 0.00000 | 137,155,464 ± 0.00000 | 29.85507 ± 1.14905 |
| BarGraph | 5.41248 ± 4.20403 | 17.10003 ± 0.67535 | 17.98593 ± 0.71919 | 0.86579 ± 0.16321 | 0.25317 ± 0.05967 | 0.10848 ± 0.07187 | 86,545 ± 0.00000 | 90,185,728 ± 0.00000 | 28.58858 ± 0.19662 |
| Combination | 2.21433 ± 1.04818 | 15.95586 ± 0.17249 | 16.76053 ± 0.27255 | 0.98213 ± 0.01559 | 0.35052 ± 0.01405 | 0.22664 ± 0.02509 | 2,976,641 ± 0.00000 | 991,275,840 ± 0.00000 | 27.91533 ± 0.61218 |
| SuperTML | 14.58648 ± 1.90400 | 18.78454 ± 0.51314 | 19.16329 ± 0.47282 | 0.33360 ± 0.17012 | 0.09937 ± 0.04895 | -0.01126 ± 0.04976 | 277,457 ± 0.00000 | 279,559,680 ± 0.00000 | 34.35937 ± 0.34717 |
| FeatureWrap | 15.37580 ± 1.24064 | 18.89610 ± 0.46891 | 19.02199 ± 0.44515 | 0.26569 ± 0.11599 | 0.08874 ± 0.04542 | 0.00364 ± 0.04705 | 36,769 ± 0.00000 | 3,266,144 ± 0.00000 | 13.14731 ± 0.89654 |
| BIE | 4.88207 ± 4.02859 | 19.64237 ± 0.61272 | 19.34129 ± 0.51306 | 0.88623 ± 0.13971 | 0.01506 ± 0.06071 | -0.03021 ± 0.05498 | 19,046,097 ± 0.00000 | 1,580,752,896 ± 0.00000 | 38.22191 ± 0.87412 |
CNN + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 10.11680 ± 2.57885 | 15.85264 ± 0.61112 | 17.19357 ± 0.86346 | 0.66731 ± 0.15259 | 0.35819 ± 0.04981 | 0.18469 ± 0.08119 | 1,354,913 ± 0.00000 | 113,068,800 ± 0.00000 | 24.04323 ± 0.43570 |
| IGTD | 3.37414 ± 3.68402 | 16.04367 ± 0.78891 | 17.85496 ± 0.89318 | 0.93127 ± 0.13106 | 0.34214 ± 0.06378 | 0.12078 ± 0.08993 | 505,473 ± 0.00000 | 12,968,736 ± 0.00000 | 23.35832 ± 0.13444 |
| REFINED | 3.90924 ± 2.74580 | 15.06717 ± 0.42406 | 15.29549 ± 0.55394 | 0.93414 ± 0.07172 | 0.42054 ± 0.03240 | 0.35539 ± 0.04664 | 3,843,265 ± 0.00000 | 120,404,960 ± 0.00000 | 18.31227 ± 0.12764 |
| DistanceMatrix | 2.46382 ± 1.43092 | 16.01207 ± 0.36239 | 16.19995 ± 0.35934 | 0.97618 ± 0.02643 | 0.34573 ± 0.02997 | 0.27738 ± 0.03198 | 1,472,777 ± 0.00000 | 137,693,672 ± 0.00000 | 30.08562 ± 0.68356 |
| BarGraph | 13.46694 ± 0.92622 | 17.15620 ± 0.49037 | 17.43264 ± 0.60262 | 0.43749 ± 0.07690 | 0.24870 ± 0.04300 | 0.16275 ± 0.05797 | 318,865 ± 0.00000 | 90,649,472 ± 0.00000 | 31.54327 ± 0.74361 |
| Combination | 2.69676 ± 0.48890 | 15.55850 ± 0.28827 | 16.38854 ± 0.14145 | 0.97694 ± 0.00809 | 0.38235 ± 0.02296 | 0.26070 ± 0.01276 | 3,013,761 ± 0.00000 | 991,349,664 ± 0.00000 | 28.90632 ± 1.47219 |
| SuperTML | 12.44674 ± 1.87392 | 16.39167 ± 0.44488 | 17.21217 ± 0.44550 | 0.51262 ± 0.14688 | 0.31422 ± 0.03778 | 0.18414 ± 0.04263 | 542,865 ± 0.00000 | 280,089,472 ± 0.00000 | 35.44523 ± 0.53667 |
| FeatureWrap | 11.59757 ± 3.70233 | 17.73740 ± 0.23283 | 18.04943 ± 0.44827 | 0.55051 ± 0.21409 | 0.19735 ± 0.02110 | 0.10287 ± 0.04485 | 257,745 ± 0.00000 | 3,707,280 ± 0.00000 | 13.81799 ± 1.11630 |
| BIE | 3.94150 ± 0.84846 | 18.73255 ± 0.55031 | 18.62305 ± 0.62363 | 0.95022 ± 0.01925 | 0.10427 ± 0.05202 | 0.04456 ± 0.06396 | 18,945,553 ± 0.00000 | 1,580,551,520 ± 0.00000 | 40.39863 ± 0.22127 |
Health insurance
Leaderboard
| Family | Best variant | Test RMSE | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | CatBoost | 14.24579 ± 0.00935 | 0.41469 ± 0.00077 | 8.40559 ± 0.18532 | — | — |
| MLP | MLP | 14.41788 ± 0.05896 | 0.40045 ± 0.00491 | 23.59535 ± 0.16191 | 72,705 ± 0.00000 | 144,896 ± 0.00000 |
| ViT | REFINED | 14.31386 ± 0.04021 | 0.40908 ± 0.00332 | 112.10536 ± 6.41435 | 3,954,055 ± 0.00000 | 178,178,231 ± 0.00000 |
| CNN | Combination | 14.35479 ± 0.02489 | 0.40570 ± 0.00206 | 341.71894 ± 121.41553 | 14,729 ± 0.00000 | 30,507,467,000.4 ± 67,671,999,500.72966 |
Architecture Results
Tree Baselines
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 14.00700 ± 0.01523 | 14.49204 ± 0.00387 | 14.24579 ± 0.00935 | 0.44059 ± 0.00122 | 0.40015 ± 0.00032 | 0.41469 ± 0.00077 | 8.40559 ± 0.18532 | — | — |
| LightGBM | 14.00577 ± 0.00000 | 14.50065 ± 0.00000 | 14.26687 ± 0.00000 | 0.44068 ± 0.00000 | 0.39944 ± 0.00000 | 0.41296 ± 0.00000 | 0.15978 ± 0.03133 | — | — |
| XGBoost | 13.96504 ± 0.00298 | 14.48740 ± 0.01172 | 14.25517 ± 0.00724 | 0.44393 ± 0.00024 | 0.40054 ± 0.00097 | 0.41392 ± 0.00060 | 0.66936 ± 0.03725 | — | — |
MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| MLP | 14.26401 ± 0.23963 | 14.66848 ± 0.04344 | 14.41788 ± 0.05896 | 0.41974 ± 0.01941 | 0.38545 ± 0.00364 | 0.40045 ± 0.00491 | 72,705 ± 0.00000 | 144,896 ± 0.00000 | 23.59535 ± 0.16191 |
ViT
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 14.90667 ± 0.07405 | 14.99027 ± 0.02687 | 14.75547 ± 0.06309 | 0.36640 ± 0.00630 | 0.35820 ± 0.00230 | 0.37205 ± 0.00537 | 3,052,633 ± 0.00000 | 30,099,212 ± 0.00000 | 218.86890 ± 3.80415 |
| IGTD | 14.41499 ± 0.03905 | 14.74528 ± 0.05914 | 14.50579 ± 0.04380 | 0.40752 ± 0.00321 | 0.37900 ± 0.00498 | 0.39313 ± 0.00367 | 15,348,535 ± 0.00000 | 149,915,190 ± 0.00000 | 198.74354 ± 1.54255 |
| REFINED | 14.16646 ± 0.14277 | 14.56664 ± 0.07354 | 14.31386 ± 0.04021 | 0.42773 ± 0.01154 | 0.39395 ± 0.00613 | 0.40908 ± 0.00332 | 3,954,055 ± 0.00000 | 178,178,231 ± 0.00000 | 112.10536 ± 6.41435 |
| DistanceMatrix | 14.40996 ± 0.11359 | 14.64094 ± 0.06183 | 14.46737 ± 0.08837 | 0.40791 ± 0.00936 | 0.38775 ± 0.00518 | 0.39632 ± 0.00740 | 18,009,271 ± 0.00000 | 938,846,999 ± 0.00000 | 452.18137 ± 1.34062 |
| BarGraph | 14.29940 ± 0.07290 | 14.63614 ± 0.04308 | 14.36011 ± 0.01015 | 0.41697 ± 0.00595 | 0.38816 ± 0.00361 | 0.40526 ± 0.00084 | 17,784,983 ± 0.00000 | 901,498,431 ± 0.00000 | 463.53721 ± 1.41682 |
| Combination | 14.30616 ± 0.13358 | 14.59731 ± 0.01957 | 14.36827 ± 0.01376 | 0.41639 ± 0.01085 | 0.39141 ± 0.00163 | 0.40458 ± 0.00114 | 782,743 ± 0.00000 | 43,985,679 ± 0.00000 | 133.54671 ± 2.39014 |
| SuperTML | 14.32618 ± 0.09602 | 14.71468 ± 0.03609 | 14.43704 ± 0.03742 | 0.41478 ± 0.00783 | 0.38158 ± 0.00303 | 0.39887 ± 0.00312 | 1,228,673 ± 0.00000 | 128,519,616 ± 0.00000 | 849.08724 ± 16.28477 |
| FeatureWrap | 14.57555 ± 0.13783 | 14.90586 ± 0.03114 | 14.80843 ± 0.04887 | 0.39421 ± 0.01148 | 0.36540 ± 0.00265 | 0.36754 ± 0.00418 | 6,685,239 ± 0.00000 | 66,224,004 ± 0.00000 | 266.60863 ± 3.80443 |
| BIE | 14.34745 ± 0.16886 | 14.76377 ± 0.08510 | 14.56183 ± 0.08750 | 0.41300 ± 0.01387 | 0.37743 ± 0.00719 | 0.38841 ± 0.00736 | 2,595,745 ± 0.00000 | 25,652,424 ± 0.00000 | 296.86140 ± 3.08840 |
ViT + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | — | — | — | — | — | — | — | — | — |
| IGTD | — | — | — | — | — | — | — | — | — |
| REFINED | — | — | — | — | — | — | — | — | — |
| DistanceMatrix | — | — | — | — | — | — | — | — | — |
| BarGraph | — | — | — | — | — | — | — | — | — |
| Combination | — | — | — | — | — | — | — | — | — |
| SuperTML | — | — | — | — | — | — | — | — | — |
| FeatureWrap | 14.64419 ± 0.06402 | 14.92097 ± 0.05659 | 14.77694 ± 0.02616 | 0.38852 ± 0.00534 | 0.36411 ± 0.00482 | 0.37023 ± 0.00223 | 6,660,407 ± 0.00000 | 359,965,332,836 ± 793,197,824,645.23132 | 595.82048 ± 170.82780 |
| BIE | 14.06634 ± 0.42315 | 14.69208 ± 0.13668 | 14.46670 ± 0.09874 | 0.43543 ± 0.03352 | 0.38344 ± 0.01153 | 0.39637 ± 0.00826 | 2,781,441 ± 0.00000 | 113,740,118,660.8 ± 252,604,596,884.66263 | 673.43974 ± 153.13924 |
CNN
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 14.20966 ± 0.12760 | 15.13582 ± 0.06853 | 14.90585 ± 0.06573 | 0.42424 ± 0.01037 | 0.34566 ± 0.00593 | 0.35918 ± 0.00566 | 137,193 ± 0.00000 | 97,100,106,840 ± 177,334,897,633.34714 | 273.75396 ± 91.47594 |
| IGTD | 14.07675 ± 0.56979 | 14.87647 ± 0.16764 | 14.77837 ± 0.23073 | 0.43426 ± 0.04490 | 0.36784 ± 0.01431 | 0.36999 ± 0.01973 | 379,921 ± 0.00000 | 23,514,255,340.8 ± 39,895,887,557.08404 | 310.17038 ± 109.96476 |
| REFINED | 14.20569 ± 0.26736 | 14.67801 ± 0.05755 | 14.42321 ± 0.06496 | 0.42444 ± 0.02152 | 0.38465 ± 0.00482 | 0.40001 ± 0.00541 | 22,721 ± 0.00000 | 2,127,251,420.8 ± 4,727,825,965.72182 | 287.14075 ± 106.06291 |
| DistanceMatrix | 14.07601 ± 0.31802 | 14.60251 ± 0.10019 | 14.37632 ± 0.06409 | 0.43483 ± 0.02523 | 0.39095 ± 0.00839 | 0.40391 ± 0.00532 | 1,306,657 ± 0.00000 | 1,648,572,144,089.6001 ± 2,860,193,866,394.75586 | 334.61430 ± 103.91823 |
| BarGraph | 14.37006 ± 0.07627 | 14.58942 ± 0.03359 | 14.35670 ± 0.03626 | 0.41120 ± 0.00626 | 0.39206 ± 0.00280 | 0.40554 ± 0.00301 | 5,417,457 ± 0.00000 | 1,405,065,174,595.19995 ± 3,112,648,869,247.36816 | 363.45893 ± 112.02614 |
| Combination | 14.28038 ± 0.06160 | 14.55864 ± 0.02904 | 14.35479 ± 0.02489 | 0.41853 ± 0.00501 | 0.39462 ± 0.00242 | 0.40570 ± 0.00206 | 14,729 ± 0.00000 | 30,507,467,000.4 ± 67,671,999,500.72966 | 341.71894 ± 121.41553 |
| SuperTML | 14.33471 ± 0.19071 | 14.67737 ± 0.11701 | 14.42643 ± 0.11644 | 0.41402 ± 0.01563 | 0.38468 ± 0.00986 | 0.39972 ± 0.00974 | 750,369 ± 0.00000 | 25,645,956,761.6 ± 15,726,805,509.29922 | 2,389.29581 ± 172.56997 |
| FeatureWrap | 14.29496 ± 0.19934 | 14.77070 ± 0.07971 | 14.81967 ± 0.08522 | 0.41726 ± 0.01626 | 0.37685 ± 0.00673 | 0.36656 ± 0.00728 | 48,337 ± 0.00000 | 8,641,717,884.8 ± 19,182,581,167.87682 | 492.14608 ± 184.11893 |
| BIE | 14.15244 ± 0.24928 | 14.79987 ± 0.04575 | 14.61196 ± 0.12369 | 0.42877 ± 0.01999 | 0.37439 ± 0.00387 | 0.38418 ± 0.01047 | 754,089 ± 0.00000 | 11,105,391,678,592 ± 24,719,605,984,413.71484 | 656.42623 ± 130.46665 |
CNN + MLP
| Method |
|---|
| TINTO |
| IGTD |
| REFINED |
| DistanceMatrix |
| BarGraph |
| Combination |
| SuperTML |
| FeatureWrap |
| BIE |
Pumadyn32nh
Leaderboard
| Family | Best variant | Test RMSE | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | CatBoost | 0.02097 ± 0.00004 | 0.64498 ± 0.00135 | 5.07097 ± 0.12914 | — | — |
| MLP | MLP | 0.02233 ± 0.00010 | 0.59719 ± 0.00354 | 41.73644 ± 1.80933 | 49,665 ± 0.00000 | 98,880 ± 0.00000 |
| ViT | REFINED | 0.02185 ± 0.00008 | 0.61439 ± 0.00293 | 304.25574 ± 0.63485 | 11,354,503 ± 0.00000 | 822,779,180 ± 0.00000 |
| ViT+MLP | REFINED | 0.02185 ± 0.00020 | 0.61426 ± 0.00709 | 398.67869 ± 6.59992 | 11,339,975 ± 0.00000 | 7,294,636,896 ± 1,441,729,205.9538 |
| CNN | SuperTML | 0.02224 ± 0.00041 | 0.60049 ± 0.01498 | 1,138.71236 ± 0.75749 | 771,937 ± 0.00000 | 4,259,639,040 ± 0.00000 |
| CNN+MLP | SuperTML | 0.02254 ± 0.00014 | 0.58974 ± 0.00515 | 1,138.98998 ± 1.20643 | 804,961 ± 0.00000 | 4,259,704,704 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.01582 ± 0.00001 | 0.02058 ± 0.00004 | 0.02097 ± 0.00004 | 0.80792 ± 0.00016 | 0.67418 ± 0.00133 | 0.64498 ± 0.00135 | 5.07097 ± 0.12914 | — | — |
| LightGBM | 0.01771 ± 0.00003 | 0.02110 ± 0.00008 | 0.02134 ± 0.00003 | 0.75918 ± 0.00093 | 0.65733 ± 0.00272 | 0.63231 ± 0.00098 | 0.36394 ± 0.02792 | — | — |
| XGBoost | 0.01904 ± 0.00001 | 0.02104 ± 0.00002 | 0.02126 ± 0.00002 | 0.72162 ± 0.00028 | 0.65953 ± 0.00064 | 0.63497 ± 0.00060 | 1.47681 ± 0.03719 | — | — |
MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.01956 ± 0.00009 | 0.02224 ± 0.00014 | 0.02233 ± 0.00010 | 0.70639 ± 0.00267 | 0.61939 ± 0.00493 | 0.59719 ± 0.00354 | 49,665 ± 0.00000 | 98,880 ± 0.00000 | 41.73644 ± 1.80933 |
ViT
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.02239 ± 0.00036 | 0.02379 ± 0.00016 | 0.02407 ± 0.00008 | 0.61512 ± 0.01237 | 0.56450 ± 0.00589 | 0.53201 ± 0.00329 | 16,600,153 ± 0.00000 | 164,288,418 ± 0.00000 | 403.39934 ± 3.78837 |
| IGTD | 0.02482 ± 0.00133 | 0.02770 ± 0.00030 | 0.02836 ± 0.00012 | 0.52603 ± 0.05134 | 0.40978 ± 0.01275 | 0.35032 ± 0.00563 | 4,321,335 ± 0.00000 | 42,443,564 ± 0.00000 | 298.27538 ± 0.24385 |
| REFINED | 0.02113 ± 0.00029 | 0.02070 ± 0.00007 | 0.02185 ± 0.00008 | 0.65733 ± 0.00941 | 0.67046 ± 0.00238 | 0.61439 ± 0.00293 | 11,354,503 ± 0.00000 | 822,779,180 ± 0.00000 | 304.25574 ± 0.63485 |
| DistanceMatrix | 0.02414 ± 0.00072 | 0.02530 ± 0.00017 | 0.02587 ± 0.00028 | 0.55231 ± 0.02681 | 0.50772 ± 0.00673 | 0.45924 ± 0.01147 | 8,211,585 ± 0.00000 | 80,177,580 ± 0.00000 | 282.84231 ± 3.23933 |
| BarGraph | 0.02085 ± 0.00079 | 0.02169 ± 0.00052 | 0.02230 ± 0.00037 | 0.66587 ± 0.02565 | 0.63775 ± 0.01732 | 0.59840 ± 0.01328 | 8,346,497 ± 0.00000 | 81,331,920 ± 0.00000 | 343.30284 ± 29.30881 |
| Combination | 0.02088 ± 0.00063 | 0.02171 ± 0.00023 | 0.02256 ± 0.00027 | 0.66521 ± 0.02014 | 0.63735 ± 0.00778 | 0.58878 ± 0.00972 | 10,981,729 ± 0.00000 | 1,424,588,196 ± 0.00000 | 324.80838 ± 2.57464 |
| SuperTML | 0.02144 ± 0.00066 | 0.02119 ± 0.00027 | 0.02193 ± 0.00026 | 0.64674 ± 0.02186 | 0.65439 ± 0.00891 | 0.61166 ± 0.00933 | 975,649 ± 0.00000 | 510,261,742 ± 0.00000 | 359.72687 ± 6.97145 |
| FeatureWrap | 0.03487 ± 0.00010 | 0.03497 ± 0.00012 | 0.03410 ± 0.00008 | 0.06663 ± 0.00532 | 0.05901 ± 0.00618 | 0.06103 ± 0.00457 | 8,319,777 ± 0.00000 | 79,884,240 ± 0.00000 | 351.17434 ± 18.46822 |
| BIE | 0.02300 ± 0.00170 | 0.02463 ± 0.00178 | 0.02457 ± 0.00168 | 0.59212 ± 0.05938 | 0.53127 ± 0.06789 | 0.51071 ± 0.06812 | 8,493,217 ± 0.00000 | 285,350,020 ± 0.00000 | 402.58314 ± 10.93166 |
ViT + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.01967 ± 0.00079 | 0.02241 ± 0.00012 | 0.02271 ± 0.00025 | 0.70245 ± 0.02377 | 0.61350 ± 0.00409 | 0.58337 ± 0.00929 | 16,585,497 ± 0.00000 | 2,359,058,576 ± 466,249,889.61959 | 948.19912 ± 16.09877 |
| IGTD | 0.02233 ± 0.00167 | 0.02336 ± 0.00105 | 0.02336 ± 0.00095 | 0.61561 ± 0.05807 | 0.57953 ± 0.03789 | 0.55871 ± 0.03576 | 4,273,463 ± 0.00000 | 609,931,104 ± 120,548,219.02632 | 378.72084 ± 15.63163 |
| REFINED | 0.02141 ± 0.00023 | 0.02070 ± 0.00010 | 0.02185 ± 0.00020 | 0.64801 ± 0.00749 | 0.67034 ± 0.00307 | 0.61426 ± 0.00709 | 11,339,975 ± 0.00000 | 7,294,636,896 ± 1,441,729,205.9538 | 398.67869 ± 6.59992 |
| DistanceMatrix | 0.01958 ± 0.00134 | 0.02227 ± 0.00018 | 0.02290 ± 0.00034 | 0.70462 ± 0.04016 | 0.61833 ± 0.00600 | 0.57650 ± 0.01266 | 8,154,241 ± 0.00000 | 1,138,069,728 ± 224,930,779.78552 | 366.64496 ± 20.56310 |
| BarGraph | 0.02113 ± 0.00039 | 0.02184 ± 0.00050 | 0.02263 ± 0.00036 | 0.65709 ± 0.01279 | 0.63282 ± 0.01687 | 0.58627 ± 0.01301 | 8,389,249 ± 0.00000 | 1,154,515,072 ± 228,181,076.28208 | 392.98477 ± 25.46348 |
| Combination | 0.02009 ± 0.00028 | 0.02126 ± 0.00009 | 0.02219 ± 0.00022 | 0.68993 ± 0.00857 | 0.65237 ± 0.00307 | 0.60229 ± 0.00784 | 10,917,793 ± 0.00000 | 12,113,008,160 ± 2,394,043,443.86283 | 402.76591 ± 31.83774 |
| SuperTML | 0.02055 ± 0.00065 | 0.02129 ± 0.00033 | 0.02191 ± 0.00034 | 0.67545 ± 0.02058 | 0.65114 ± 0.01092 | 0.61229 ± 0.01194 | 1,094,049 ± 0.00000 | 4,183,851,632 ± 826,906,284.33329 | 427.94311 ± 6.77084 |
| FeatureWrap | 0.02040 ± 0.00095 | 0.02279 ± 0.00010 | 0.02311 ± 0.00034 | 0.67989 ± 0.02992 | 0.60037 ± 0.00334 | 0.56848 ± 0.01276 | 8,058,593 ± 0.00000 | 1,139,654,272 ± 225,243,952.79132 | 409.11364 ± 16.84657 |
| BIE | 0.01961 ± 0.00120 | 0.02249 ± 0.00026 | 0.02258 ± 0.00047 | 0.70390 ± 0.03674 | 0.61072 ± 0.00903 | 0.58824 ± 0.01728 | 8,488,993 ± 0.00000 | 2,808,225,440 ± 555,024,285.85178 | 595.30145 ± 45.64617 |
CNN
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.02170 ± 0.00068 | 0.02352 ± 0.00042 | 0.02431 ± 0.00084 | 0.63807 ± 0.02244 | 0.57441 ± 0.01520 | 0.52221 ± 0.03371 | 146,025 ± 0.00000 | 14,930,400 ± 0.00000 | 113.59447 ± 1.40437 |
| IGTD | 0.01990 ± 0.00137 | 0.02332 ± 0.00033 | 0.02404 ± 0.00027 | 0.69484 ± 0.04167 | 0.58135 ± 0.01186 | 0.53323 ± 0.01056 | 138,633 ± 0.00000 | 2,665,296 ± 0.00000 | 112.16792 ± 0.77712 |
| REFINED | 0.02033 ± 0.00044 | 0.02318 ± 0.00033 | 0.02404 ± 0.00089 | 0.68265 ± 0.01382 | 0.58668 ± 0.01185 | 0.53295 ± 0.03513 | 26,873 ± 0.00000 | 500,232 ± 0.00000 | 115.67679 ± 1.13143 |
| DistanceMatrix | 0.02227 ± 0.00095 | 0.02396 ± 0.00037 | 0.02471 ± 0.00054 | 0.61870 ± 0.03258 | 0.55838 ± 0.01347 | 0.50689 ± 0.02142 | 27,409 ± 0.00000 | 19,190,864 ± 0.00000 | 105.71885 ± 1.76016 |
| BarGraph | 0.01696 ± 0.00854 | 0.02249 ± 0.00061 | 0.02293 ± 0.00052 | 0.73433 ± 0.14888 | 0.61052 ± 0.02149 | 0.57509 ± 0.01944 | 6,591,201 ± 0.00000 | 648,924,672 ± 0.00000 | 182.02909 ± 4.87026 |
| Combination | 0.01703 ± 0.00843 | 0.02246 ± 0.00060 | 0.02320 ± 0.00070 | 0.73364 ± 0.14886 | 0.61179 ± 0.02081 | 0.56505 ± 0.02604 | 6,481,505 ± 0.00000 | 1,785,374,208 ± 0.00000 | 169.32325 ± 1.95742 |
| SuperTML | 0.02107 ± 0.00133 | 0.02146 ± 0.00023 | 0.02224 ± 0.00041 | 0.65795 ± 0.04197 | 0.64574 ± 0.00779 | 0.60049 ± 0.01498 | 771,937 ± 0.00000 | 4,259,639,040 ± 0.00000 | 1,138.71236 ± 0.75749 |
| FeatureWrap | 0.03429 ± 0.00082 | 0.03542 ± 0.00029 | 0.03464 ± 0.00027 | 0.09673 ± 0.04388 | 0.03468 ± 0.01560 | 0.03080 ± 0.01532 | 1,674,129 ± 0.00000 | 30,998,352 ± 0.00000 | 115.27792 ± 0.29258 |
| BIE | 0.00158 ± 0.00113 | 0.02676 ± 0.00054 | 0.02643 ± 0.00023 | 0.99730 ± 0.00392 | 0.44873 ± 0.02236 | 0.43585 ± 0.00987 | 417,041 ± 0.00000 | 133,454,208 ± 0.00000 | 333.18199 ± 12.26761 |
CNN + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.02153 ± 0.00058 | 0.02305 ± 0.00021 | 0.02410 ± 0.00019 | 0.64403 ± 0.01900 | 0.59111 ± 0.00751 | 0.53085 ± 0.00756 | 183,209 ± 0.00000 | 15,004,432 ± 0.00000 | 138.96872 ± 8.46889 |
| IGTD | 0.02082 ± 0.00071 | 0.02283 ± 0.00045 | 0.02352 ± 0.00037 | 0.66693 ± 0.02229 | 0.59900 ± 0.01596 | 0.55299 ± 0.01415 | 253,529 ± 0.00000 | 2,894,352 ± 0.00000 | 225.15165 ± 38.38193 |
| REFINED | 0.02077 ± 0.00109 | 0.02244 ± 0.00057 | 0.02337 ± 0.00059 | 0.66801 ± 0.03549 | 0.61247 ± 0.01998 | 0.55876 ± 0.02209 | 129,881 ± 0.00000 | 705,488 ± 0.00000 | 235.78252 ± 48.03677 |
| DistanceMatrix | 0.02025 ± 0.00099 | 0.02334 ± 0.00019 | 0.02381 ± 0.00021 | 0.68442 ± 0.03115 | 0.58096 ± 0.00682 | 0.54196 ± 0.00821 | 84,241 ± 0.00000 | 19,304,016 ± 0.00000 | 141.11054 ± 2.98111 |
| BarGraph | 0.01396 ± 0.00919 | 0.02259 ± 0.00019 | 0.02326 ± 0.00039 | 0.79843 ± 0.17347 | 0.60745 ± 0.00670 | 0.56282 ± 0.01456 | 6,500,897 ± 0.00000 | 648,743,936 ± 0.00000 | 205.01951 ± 3.11489 |
| Combination | 0.02097 ± 0.00084 | 0.02217 ± 0.00051 | 0.02301 ± 0.00068 | 0.66205 ± 0.02684 | 0.62169 ± 0.01732 | 0.57206 ± 0.02532 | 6,266,401 ± 0.00000 | 1,784,944,208 ± 0.00000 | 188.25400 ± 4.97836 |
| SuperTML | 0.02049 ± 0.00099 | 0.02190 ± 0.00031 | 0.02254 ± 0.00014 | 0.67709 ± 0.03193 | 0.63105 ± 0.01051 | 0.58974 ± 0.00515 | 804,961 ± 0.00000 | 4,259,704,704 ± 0.00000 | 1,138.98998 ± 1.20643 |
| FeatureWrap | 0.02190 ± 0.00072 | 0.02484 ± 0.00053 | 0.02482 ± 0.00064 | 0.63140 ± 0.02422 | 0.52515 ± 0.02016 | 0.50201 ± 0.02569 | 1,726,161 ± 0.00000 | 31,101,984 ± 0.00000 | 121.36724 ± 0.28997 |
| BIE | 0.01741 ± 0.00180 | 0.02867 ± 0.00206 | 0.02894 ± 0.00189 | 0.76523 ± 0.04553 | 0.36506 ± 0.09236 | 0.32103 ± 0.08978 | 460,337 ± 0.00000 | 133,540,448 ± 0.00000 | 177.56438 ± 2.37141 |
Student performance por
Leaderboard
| Family | Best variant | Test RMSE | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | LightGBM | 2.07327 ± 0.01229 | 0.24692 ± 0.00894 | 0.06854 ± 0.00324 | — | — |
| MLP | MLP | 2.09287 ± 0.08028 | 0.23174 ± 0.05981 | 3.05389 ± 0.51833 | 292,353 ± 0.00000 | 583,680 ± 0.00000 |
| ViT | REFINED | 2.13202 ± 0.06906 | 0.20300 ± 0.05223 | 19.78263 ± 0.04077 | 8,970,759 ± 0.00000 | 1,111,201,232 ± 0.00000 |
| ViT+MLP | REFINED | 2.00620 ± 0.02164 | 0.29482 ± 0.01526 | 24.76651 ± 0.31276 | 8,878,343 ± 0.00000 | 33,044,561,088 ± 1,866,001,380.69021 |
| CNN | IGTD | 2.08120 ± 0.15865 | 0.23765 ± 0.12046 | 8.71615 ± 0.05789 | 824,241 ± 0.00000 | 12,292,800 ± 0.00000 |
| CNN+MLP | REFINED | 2.03476 ± 0.06501 | 0.27407 ± 0.04684 | 20.00194 ± 0.48703 | 6,591,281 ± 0.00000 | 730,020,896 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 2.14322 ± 0.04256 | 2.61678 ± 0.00698 | 2.08151 ± 0.00951 | 0.60506 ± 0.01581 | 0.27242 ± 0.00387 | 0.24094 ± 0.00693 | 12.64899 ± 0.14024 | — | — |
| LightGBM | 2.68989 ± 0.00442 | 2.62963 ± 0.01526 | 2.07327 ± 0.01229 | 0.37808 ± 0.00204 | 0.26524 ± 0.00852 | 0.24692 ± 0.00894 | 0.06854 ± 0.00324 | — | — |
| XGBoost | 2.59119 ± 0.00514 | 2.60717 ± 0.00659 | 2.07417 ± 0.01860 | 0.42289 ± 0.00229 | 0.27775 ± 0.00365 | 0.24625 ± 0.01354 | 0.15527 ± 0.00400 | — | — |
MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| MLP | 2.20826 ± 0.92555 | 2.75390 ± 0.02522 | 2.09287 ± 0.08028 | 0.52195 ± 0.31138 | 0.19412 ± 0.01477 | 0.23174 ± 0.05981 | 292,353 ± 0.00000 | 583,680 ± 0.00000 | 3.05389 ± 0.51833 |
ViT
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 2.93695 ± 0.05031 | 2.59890 ± 0.05789 | 2.23585 ± 0.02876 | 0.25842 ± 0.02535 | 0.28205 ± 0.03202 | 0.12409 ± 0.02259 | 903,703 ± 0.00000 | 29,203,002 ± 0.00000 | 18.44586 ± 0.19326 |
| IGTD | 2.81884 ± 0.16402 | 2.77916 ± 0.02253 | 2.28951 ± 0.07894 | 0.31518 ± 0.07729 | 0.17928 ± 0.01333 | 0.08080 ± 0.06307 | 2,774,881 ± 0.00000 | 27,840,536 ± 0.00000 | 11.72688 ± 0.10983 |
| REFINED | 2.88697 ± 0.08463 | 2.64711 ± 0.04207 | 2.13202 ± 0.06906 | 0.28312 ± 0.04193 | 0.25531 ± 0.02359 | 0.20300 ± 0.05223 | 8,970,759 ± 0.00000 | 1,111,201,232 ± 0.00000 | 19.78263 ± 0.04077 |
| DistanceMatrix | 2.64166 ± 0.17059 | 2.76243 ± 0.02828 | 2.15614 ± 0.07647 | 0.39819 ± 0.07808 | 0.18911 ± 0.01656 | 0.18473 ± 0.05856 | 17,054,305 ± 0.00000 | 1,703,980,720 ± 0.00000 | 32.18724 ± 0.15245 |
| BarGraph | 2.75222 ± 0.17286 | 2.65312 ± 0.05940 | 2.25989 ± 0.12131 | 0.34687 ± 0.07891 | 0.25177 ± 0.03342 | 0.10322 ± 0.09584 | 1,216,353 ± 0.00000 | 459,910,052 ± 0.00000 | 12.96350 ± 0.18219 |
| Combination | 2.80817 ± 0.11109 | 2.69432 ± 0.05642 | 2.21138 ± 0.12874 | 0.32134 ± 0.05331 | 0.22840 ± 0.03260 | 0.14096 ± 0.09914 | 4,855,105 ± 0.00000 | 456,591,504 ± 0.00000 | 14.19763 ± 0.12567 |
| SuperTML | 2.84375 ± 0.12419 | 2.69306 ± 0.06959 | 2.22813 ± 0.13748 | 0.30384 ± 0.06039 | 0.22898 ± 0.04003 | 0.12760 ± 0.11153 | 1,753,089 ± 0.00000 | 55,688,968 ± 0.00000 | 18.68712 ± 0.78474 |
| FeatureWrap | 3.05272 ± 0.12647 | 2.81339 ± 0.16254 | 2.26426 ± 0.03637 | 0.19789 ± 0.06629 | 0.15674 ± 0.09718 | 0.10163 ± 0.02890 | 22,093,623 ± 0.00000 | 442,033,759 ± 0.00000 | 40.14556 ± 4.76981 |
| BIE | 2.83558 ± 0.10440 | 2.70644 ± 0.05184 | 2.32541 ± 0.10244 | 0.30814 ± 0.05019 | 0.22148 ± 0.02998 | 0.05117 ± 0.08415 | 22,192,513 ± 0.00000 | 2,904,925,784 ± 0.00000 | 50.89112 ± 0.34698 |
ViT + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.84497 ± 0.29635 | 2.67168 ± 0.04201 | 2.22408 ± 0.13201 | 0.93259 ± 0.04116 | 0.24142 ± 0.02398 | 0.13097 ± 0.10137 | 1,360,151 ± 0.00000 | 293,072,208 ± 57,923,481.01091 | 22.41009 ± 0.33038 |
| IGTD | 2.83420 ± 0.05077 | 2.75004 ± 0.03526 | 2.04088 ± 0.02291 | 0.30939 ± 0.02468 | 0.19633 ± 0.02060 | 0.27022 ± 0.01646 | 3,116,769 ± 0.00000 | 914,998,320 ± 80,374,409.62299 | 16.02527 ± 0.26102 |
| REFINED | 2.69505 ± 0.07157 | 2.68977 ± 0.03813 | 2.00620 ± 0.02164 | 0.37534 ± 0.03303 | 0.23114 ± 0.02191 | 0.29482 ± 0.01526 | 8,878,343 ± 0.00000 | 33,044,561,088 ± 1,866,001,380.69021 | 24.76651 ± 0.31276 |
| DistanceMatrix | 2.75605 ± 0.09744 | 2.77058 ± 0.05214 | 2.06605 ± 0.03636 | 0.34646 ± 0.04672 | 0.18415 ± 0.03092 | 0.25200 ± 0.02656 | 17,145,249 ± 0.00000 | 14,740,056,064 ± 2,913,259,375.05104 | 38.64666 ± 0.90085 |
| BarGraph | 2.78466 ± 0.08357 | 2.74530 ± 0.03297 | 2.04117 ± 0.01500 | 0.33301 ± 0.03986 | 0.19911 ± 0.01920 | 0.27005 ± 0.01072 | 1,436,097 ± 0.00000 | 17,873,390,744 ± 743,692,424.48962 | 18.48115 ± 0.51367 |
| Combination | 1.36122 ± 0.28026 | 2.68793 ± 0.03098 | 2.15356 ± 0.06181 | 0.83534 ± 0.07353 | 0.23224 ± 0.01782 | 0.18696 ± 0.04625 | 4,862,817 ± 0.00000 | 8,873,642,016 ± 779,469,997.54245 | 18.95864 ± 0.27732 |
| SuperTML | 2.67008 ± 0.10342 | 2.70077 ± 0.07558 | 2.06424 ± 0.05476 | 0.38647 ± 0.04665 | 0.22448 ± 0.04331 | 0.25307 ± 0.03928 | 2,078,081 ± 0.00000 | 1,683,872,736 ± 95,087,020.27892 | 21.70629 ± 1.15053 |
| FeatureWrap | 0.58956 ± 0.13245 | 2.68276 ± 0.05475 | 2.18022 ± 0.09262 | 0.96892 ± 0.01377 | 0.23502 ± 0.03111 | 0.16605 ± 0.06917 | 22,633,079 ± 0.00000 | 23,547,780,378 ± 979,797,629.41975 | 53.58027 ± 1.19315 |
| BIE | 2.71706 ± 0.11849 | 2.71004 ± 0.02256 | 2.10730 ± 0.07137 | 0.36449 ± 0.05558 | 0.21960 ± 0.01297 | 0.22131 ± 0.05285 | 22,625,345 ± 0.00000 | 24,682,275,008 ± 4,878,262,928.74567 | 57.14752 ± 1.44125 |
CNN
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 2.71646 ± 0.07432 | 2.87997 ± 0.07242 | 2.20393 ± 0.05426 | 0.36536 ± 0.03457 | 0.11826 ± 0.04422 | 0.14863 ± 0.04235 | 44,137 ± 0.00000 | 9,609,200 ± 0.00000 | 9.40622 ± 0.28257 |
| IGTD | 2.14493 ± 0.79970 | 2.77638 ± 0.04811 | 2.08120 ± 0.15865 | 0.56058 ± 0.22509 | 0.18077 ± 0.02852 | 0.23765 ± 0.12046 | 824,241 ± 0.00000 | 12,292,800 ± 0.00000 | 8.71615 ± 0.05789 |
| REFINED | 0.51366 ± 0.57277 | 2.77123 ± 0.05204 | 2.13354 ± 0.11906 | 0.95476 ± 0.08806 | 0.18377 ± 0.03098 | 0.20055 ± 0.09002 | 6,492,657 ± 0.00000 | 66,168,768 ± 0.00000 | 14.35458 ± 0.06314 |
| DistanceMatrix | 0.39893 ± 0.31522 | 2.71516 ± 0.02309 | 2.12103 ± 0.06746 | 0.97949 ± 0.03148 | 0.21664 ± 0.01334 | 0.21121 ± 0.05013 | 1,405,713 ± 0.00000 | 487,848,704 ± 0.00000 | 24.99695 ± 0.21563 |
| BarGraph | 2.66685 ± 0.27506 | 2.85222 ± 0.06208 | 2.32736 ± 0.10340 | 0.38349 ± 0.13369 | 0.13528 ± 0.03775 | 0.04956 ± 0.08450 | 668,033 ± 0.00000 | 184,843,344 ± 0.00000 | 20.30143 ± 0.14342 |
| Combination | 2.18546 ± 0.55208 | 2.84263 ± 0.09573 | 2.21374 ± 0.12857 | 0.56851 ± 0.17633 | 0.14063 ± 0.05734 | 0.13913 ± 0.09999 | 1,710,385 ± 0.00000 | 1,457,369,280 ± 0.00000 | 16.30842 ± 0.07185 |
| SuperTML | 2.74824 ± 0.13166 | 2.78930 ± 0.05693 | 2.25473 ± 0.07110 | 0.34962 ± 0.06269 | 0.17305 ± 0.03400 | 0.10865 ± 0.05721 | 319,761 ± 0.00000 | 310,244,736 ± 0.00000 | 19.47898 ± 0.36295 |
| FeatureWrap | 2.43107 ± 0.45570 | 3.04510 ± 0.10817 | 2.58094 ± 0.12282 | 0.47773 ± 0.19317 | 0.01375 ± 0.07003 | -0.16911 ± 0.11451 | 3,067,097 ± 0.00000 | 63,097,992 ± 0.00000 | 23.04521 ± 0.18939 |
| BIE | 1.87327 ± 1.04213 | 2.77007 ± 0.08068 | 2.30823 ± 0.17893 | 0.62370 ± 0.27079 | 0.18413 ± 0.04725 | 0.06211 ± 0.14743 | 2,692,721 ± 0.00000 | 256,454,400 ± 0.00000 | 21.22984 ± 1.06166 |
CNN + MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 2.62500 ± 0.28240 | 2.72197 ± 0.02301 | 2.10339 ± 0.05933 | 0.40224 ± 0.11990 | 0.21271 ± 0.01334 | 0.22442 ± 0.04448 | 537,033 ± 0.00000 | 116,529,336 ± 0.00000 | 12.84134 ± 0.07940 |
| IGTD | 1.54520 ± 0.77944 | 2.67039 ± 0.04854 | 2.16746 ± 0.10360 | 0.75300 ± 0.18841 | 0.24211 ± 0.02748 | 0.17547 ± 0.07799 | 1,066,417 ± 0.00000 | 140,541,632 ± 0.00000 | 12.30086 ± 0.17006 |
| REFINED | 0.50965 ± 0.32211 | 2.72013 ± 0.02272 | 2.03476 ± 0.06501 | 0.97054 ± 0.03899 | 0.21377 ± 0.01316 | 0.27407 ± 0.04684 | 6,591,281 ± 0.00000 | 730,020,896 ± 0.00000 | 20.00194 ± 0.48703 |
| DistanceMatrix | 1.79537 ± 0.91277 | 2.82054 ± 0.05529 | 2.20535 ± 0.11973 | 0.66565 ± 0.26016 | 0.15444 ± 0.03341 | 0.14593 ± 0.09290 | 1,836,817 ± 0.00000 | 488,709,824 ± 0.00000 | 27.69409 ± 1.14331 |
| BarGraph | 1.08430 ± 0.10465 | 2.70800 ± 0.09488 | 2.09846 ± 0.08224 | 0.89819 ± 0.01955 | 0.22005 ± 0.05495 | 0.22759 ± 0.06083 | 1,040,449 ± 0.00000 | 2,041,457,440 ± 0.00000 | 30.53304 ± 1.71425 |
| Combination | 1.06648 ± 0.58434 | 2.78186 ± 0.05249 | 2.21351 ± 0.13429 | 0.87876 ± 0.13340 | 0.17750 ± 0.03113 | 0.13910 ± 0.10258 | 1,969,073 ± 0.00000 | 1,457,885,888 ± 0.00000 | 18.47078 ± 0.45905 |
| SuperTML | 2.71874 ± 0.06915 | 2.73325 ± 0.02812 | 2.05940 ± 0.01953 | 0.36434 ± 0.03263 | 0.20615 ± 0.01637 | 0.25693 ± 0.01407 | 656,721 ± 0.00000 | 310,917,504 ± 0.00000 | 21.61322 ± 0.57559 |
| FeatureWrap | 1.61312 ± 0.65180 | 2.76541 ± 0.05730 | 2.08629 ± 0.08131 | 0.74712 ± 0.17348 | 0.18715 ± 0.03383 | 0.23653 ± 0.05844 | 3,502,169 ± 0.00000 | 63,967,080 ± 0.00000 | 24.74905 ± 0.23222 |
| BIE | 1.02344 ± 0.60519 | 2.78509 ± 0.03986 | 2.30793 ± 0.04552 | 0.88478 ± 0.09724 | 0.17568 ± 0.02354 | 0.06655 ± 0.03657 | 3,000,625 ± 0.00000 | 257,069,440 ± 0.00000 | 21.66396 ± 0.61913 |
Superconductivity
Leaderboard
| Family | Best variant | Test RMSE | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | XGBoost | 9.39012 ± 0.01083 | 0.92444 ± 0.00017 | 14.42918 ± 0.71470 | — | — |
| MLP | MLP | 13.02278 ± 0.08713 | 0.85467 ± 0.00195 | 38.31988 ± 0.27649 | 206,337 ± 0.00000 | 411,776 ± 0.00000 |
| ViT | Combination | 9.85932 ± 0.03877 | 0.91670 ± 0.00065 | 1,081.16444 ± 256.86060 | 13,374,487 ± 0.00000 | 585,567,985,104.19995 ± 1,302,618,243,023.18262 |
| CNN | TINTO | 9.48401 ± 0.05426 | 0.92292 ± 0.00088 | 577.38758 ± 197.83984 | 10,741,857 ± 0.00000 | 710,159,859,724.80005 ± 1,271,392,566,165.7981 |
Architecture Results
Tree Baselines
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 4.53931 ± 0.01369 | 9.27537 ± 0.06568 | 9.50490 ± 0.06107 | 0.98249 ± 0.00011 | 0.92601 ± 0.00105 | 0.92258 ± 0.00100 | 35.48475 ± 0.25031 | — | — |
| LightGBM | 5.75896 ± 0.03346 | 9.46416 ± 0.07228 | 9.78001 ± 0.12346 | 0.97182 ± 0.00033 | 0.92297 ± 0.00117 | 0.91803 ± 0.00207 | 1.28021 ± 0.04398 | — | — |
| XGBoost | 4.83724 ± 0.01133 | 9.06668 ± 0.03218 | 9.39012 ± 0.01083 | 0.98012 ± 0.00009 | 0.92931 ± 0.00050 | 0.92444 ± 0.00017 | 14.42918 ± 0.71470 | — | — |
MLP
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| MLP | 12.18590 ± 0.07631 | 12.35558 ± 0.05771 | 13.02278 ± 0.08713 | 0.87381 ± 0.00158 | 0.86872 ± 0.00123 | 0.85467 ± 0.00195 | 206,337 ± 0.00000 | 411,776 ± 0.00000 | 38.31988 ± 0.27649 |
ViT
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 7.42554 ± 0.13475 | 10.17726 ± 0.06878 | 10.23188 ± 0.14155 | 0.95313 ± 0.00171 | 0.91092 ± 0.00120 | 0.91028 ± 0.00247 | 11,288,857 ± 0.00000 | 106,213,732 ± 0.00000 | 424.71950 ± 6.58643 |
| IGTD | 7.20714 ± 0.10199 | 9.98521 ± 0.11446 | 10.02393 ± 0.11961 | 0.95585 ± 0.00124 | 0.91425 ± 0.00197 | 0.91389 ± 0.00206 | 3,641,431 ± 0.00000 | 35,974,944 ± 0.00000 | 490.10305 ± 2.71046 |
| REFINED | 6.81035 ± 0.43307 | 9.98932 ± 0.18200 | 10.14475 ± 0.17488 | 0.96046 ± 0.00519 | 0.91417 ± 0.00313 | 0.91179 ± 0.00305 | 3,035,031 ± 0.00000 | 59,100,759 ± 0.00000 | 228.89744 ± 8.49279 |
| DistanceMatrix | 6.56761 ± 0.30220 | 9.79910 ± 0.15459 | 9.91098 ± 0.08857 | 0.96328 ± 0.00343 | 0.91741 ± 0.00260 | 0.91582 ± 0.00150 | 20,136,423 ± 0.00000 | 20,714,923,423,581.60156 ± 43,332,096,532,550.5625 | 1,470.66296 ± 6.31309 |
| BarGraph | 6.14691 ± 0.09702 | 9.60107 ± 0.15526 | 9.95331 ± 0.12401 | 0.96789 ± 0.00102 | 0.92071 ± 0.00257 | 0.91510 ± 0.00211 | 21,098,263 ± 0.00000 | 400,874,159 ± 0.00000 | 637.27321 ± 1.90689 |
| Combination | 6.14398 ± 0.14685 | 9.41024 ± 0.04133 | 9.85932 ± 0.03877 | 0.96791 ± 0.00155 | 0.92385 ± 0.00067 | 0.91670 ± 0.00065 | 13,374,487 ± 0.00000 | 585,567,985,104.19995 ± 1,302,618,243,023.18262 | 1,081.16444 ± 256.86060 |
| SuperTML | 4.55318 ± 0.38427 | 10.55164 ± 0.18643 | 10.95439 ± 0.18499 | 0.98228 ± 0.00301 | 0.90423 ± 0.00340 | 0.89715 ± 0.00349 | 13,033,665 ± 0.00000 | 413,926,829,673.59998 ± 907,899,654,168.94824 | 3,195.55674 ± 161.28588 |
| FeatureWrap | 12.76631 ± 0.43769 | 16.11097 ± 0.41295 | 20.59555 ± 1.42934 | 0.86138 ± 0.00966 | 0.77667 ± 0.01144 | 0.63513 ± 0.05126 | 26,463,961 ± 0.00000 | 820,659,602,644.80005 ± 1,828,045,572,040.96899 | 951.38445 ± 310.15833 |
| BIE | 4.29548 ± 0.22002 | 10.70148 ± 0.08250 | 11.03662 ± 0.22029 | 0.98429 ± 0.00162 | 0.90151 ± 0.00152 | 0.89559 ± 0.00420 | 35,879,911 ± 0.00000 | 27,587,790,024,715.39844 ± 61,453,258,210,193.89844 | 2,437.28664 ± 6.34257 |
ViT + MLP
| Method |
|---|
| TINTO |
| IGTD |
| REFINED |
| DistanceMatrix |
| BarGraph |
| Combination |
| SuperTML |
| FeatureWrap |
| BIE |
CNN
| Method | Train RMSE | Val RMSE | Test RMSE | Train R² | Val R² | Test R² | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|
| TINTO | 6.26595 ± 0.15267 | 9.62326 ± 0.07660 | 9.48401 ± 0.05426 | 0.96662 ± 0.00165 | 0.92036 ± 0.00127 | 0.92292 ± 0.00088 | 10,741,857 ± 0.00000 | 710,159,859,724.80005 ± 1,271,392,566,165.7981 | 577.38758 ± 197.83984 |
| IGTD | 6.19039 ± 0.22334 | 9.61344 ± 0.14718 | 9.85135 ± 0.11225 | 0.96740 ± 0.00233 | 0.92051 ± 0.00244 | 0.91683 ± 0.00189 | 4,507,673 ± 0.00000 | 309,129,657,280 ± 574,781,614,714.94189 | 509.33440 ± 180.92264 |
| REFINED | 5.94252 ± 0.19473 | 9.57097 ± 0.09981 | 9.57201 ± 0.11834 | 0.96997 ± 0.00197 | 0.92122 ± 0.00165 | 0.92148 ± 0.00194 | 1,654,833 ± 0.00000 | 166,022,193,100.79999 ± 280,016,749,242.1524 | 422.80904 ± 162.80911 |
| DistanceMatrix | 5.80147 ± 0.04815 | 9.53799 ± 0.14256 | 9.60631 ± 0.06818 | 0.97140 ± 0.00047 | 0.92175 ± 0.00233 | 0.92092 ± 0.00112 | 8,309,345 ± 0.00000 | 2,461,664,039,412.7998 ± 4,017,310,686,211.29297 | 1,089.20098 ± 310.99029 |
| BarGraph | 5.22966 ± 0.16871 | 9.79060 ± 0.06058 | 9.96486 ± 0.06396 | 0.97674 ± 0.00149 | 0.91756 ± 0.00102 | 0.91491 ± 0.00109 | 11,044,833 ± 0.00000 | 4,525,419,867,219.2002 ± 7,390,524,080,872.92383 | 866.04780 ± 203.89004 |
| Combination | 5.34537 ± 0.19032 | 9.55318 ± 0.07219 | 9.94313 ± 0.10081 | 0.97569 ± 0.00173 | 0.92151 ± 0.00118 | 0.91528 ± 0.00172 | 9,819,433 ± 0.00000 | 849,233,239,970.40002 ± 1,160,163,613,041.34424 | 535.82400 ± 72.16412 |
| SuperTML | 4.29412 ± 0.25653 | 10.48723 ± 0.08078 | 10.59245 ± 0.09414 | 0.98429 ± 0.00193 | 0.90541 ± 0.00146 | 0.90385 ± 0.00171 | 4,634,473 ± 0.00000 | 709,217,228,032 ± 1,564,581,382,185.67017 | 2,983.68161 ± 201.08062 |
| FeatureWrap | 13.77206 ± 2.12998 | 15.71511 ± 0.35545 | 21.06315 ± 0.83208 | 0.83574 ± 0.05462 | 0.78753 ± 0.00962 | 0.61936 ± 0.03016 | 5,460,577 ± 0.00000 | 1,030,081,193,107.19995 ± 1,820,098,138,320.47534 | 512.76986 ± 183.44309 |
| BIE | 4.55087 ± 0.51946 | 10.98117 ± 0.14843 | 11.21765 ± 0.17455 | 0.98222 ± 0.00407 | 0.89629 ± 0.00279 | 0.89215 ± 0.00336 | 11,563,073 ± 0.00000 | 15,283,835,263,308.80078 ± 21,448,598,033,060.51562 | 1,266.2391 ± 0.28499 |
CNN + MLP
| Method |
|---|
| TINTO |
| IGTD |
| REFINED |
| DistanceMatrix |
| BarGraph |
| Combination |
| SuperTML |
| FeatureWrap |
| BIE |