Multiclass Benchmarks
Dataset Overview
| Dataset | Instances | Features | Classes | Numeric | Categorical | Target |
|---|---|---|---|---|---|---|
| Cmc | 1473 | 9 | 3 | 2 | 7 | Contraceptive_method_used |
| Cnae-9 | 1080 | 856 | 9 | 856 | 0 | Class |
| Connect-4 | 67557 | 42 | 3 | 0 | 42 | class |
| Covtype | 581012 | 54 | 7 | 10 | 44 | 54 |
| Dna | 3186 | 180 | 3 | 0 | 180 | class |
| Gas | 13910 | 128 | 6 | 128 | 0 | Class |
| Isolet | 7797 | 617 | 26 | 617 | 0 | class |
| Mfeat-fourier | 2000 | 76 | 10 | 76 | 0 | class |
Quick Check
| Dataset | Type | Family / Variant | Test accuracy | Test F1 |
|---|---|---|---|---|
| Cmc | Best classical | Trees / CatBoost | 0.55928 ± 0.00248 | 0.53078 ± 0.00346 |
| Best transformed | ViT / BarGraph | 0.56290 ± 0.01452 | 0.56045 ± 0.01604 | |
| Cnae-9 | Best classical | MLP / MLP | 0.97037 ± 0.00805 | 0.96992 ± 0.00846 |
| Best transformed | ViT+MLP / SuperTML | 0.97037 ± 0.00517 | 0.97035 ± 0.00532 | |
| Connect-4 | Best classical | Trees / XGBoost | 0.86860 ± 0.00059 | 0.73852 ± 0.00118 |
| Best transformed | ViT+MLP / IGTD | 0.86819 ± 0.00221 | 0.86365 ± 0.00250 | |
| Covtype | Best classical | MLP / MLP | 0.96310 ± 0.00000 | 0.96312 ± 0.00000 |
| Best transformed | ViT+MLP / REFINED | 0.97050 ± 0.00000 | 0.97051 ± 0.00000 | |
| Dna | Best classical | Trees / LightGBM | 0.96904 ± 0.00229 | 0.96586 ± 0.00223 |
| Best transformed | ViT+MLP / IGTD | 0.96569 ± 0.00482 | 0.96579 ± 0.00484 | |
| Gas | Best classical | Trees / CatBoost | 0.99482 ± 0.00021 | 0.99480 ± 0.00026 |
| Best transformed | CNN / REFINED | 0.99559 ± 0.00092 | 0.99559 ± 0.00092 | |
| Isolet | Best classical | Trees / XGBoost | 0.96222 ± 0.00316 | 0.96221 ± 0.00314 |
| Best transformed | ViT / REFINED | 0.96376 ± 0.00268 | 0.96371 ± 0.00267 | |
| Mfeat-fourier | Best classical | Trees / CatBoost | 0.858667 ± 0.009603 | N/A |
| Best transformed | ViT / TINTO_blur | 0.870000 ± 0.016997 | N/A |
Cmc
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | CatBoost | 0.55928 ± 0.00248 | 0.53078 ± 0.00346 | 15.49520 ± 0.52367 | — | — |
| MLP | MLP | 0.52670 ± 0.01711 | 0.52548 ± 0.01566 | 20.21081 ± 0.15326 | 899.00000 ± 0.00000 | — |
| ViT | BarGraph | 0.56290 ± 0.01452 | 0.56045 ± 0.01604 | 70.66814 ± 2.09838 | 3,222,435 ± 0.00000 | 31,831,688 ± 0.00000 |
| ViT+MLP | Combination | 0.55837 ± 0.01855 | 0.55904 ± 0.01354 | 54.89044 ± 0.72794 | 1,167,587 ± 0.00000 | 257,758,240 ± 50,943,945.25477 |
| CNN | DistanceMatrix | 0.55475 ± 0.02707 | 0.55731 ± 0.02529 | 41.15781 ± 0.98381 | 764,595 ± 0.00000 | 124,157,184 ± 0.00000 |
| CNN+MLP | SuperTML | 0.54751 ± 0.01534 | 0.54463 ± 0.01651 | 136.04745 ± 2.61454 | 353,731 ± 0.00000 | 6,508,601,440 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.59088 ± 0.00467 | 0.60815 ± 0.00686 | 0.55928 ± 0.00248 | 0.53078 ± 0.00346 | 0.54658 ± 0.00803 | 0.52793 ± 0.00371 | 15.49520 ± 0.52367 | — | — |
| LightGBM | 0.62231 ± 0.00556 | 0.61086 ± 0.00715 | 0.55928 ± 0.01380 | 0.53068 ± 0.01289 | 0.54304 ± 0.01377 | 0.52804 ± 0.01305 | 0.49725 ± 0.09115 | — | — |
| XGBoost | 0.67352 ± 0.00421 | 0.60091 ± 0.00743 | 0.54932 ± 0.00248 | 0.52019 ± 0.00285 | 0.53467 ± 0.00314 | 0.51779 ± 0.00278 | 0.36403 ± 0.00770 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.64597 ± 0.00873 | 0.56199 ± 0.00981 | 0.52670 ± 0.01711 | 0.52548 ± 0.01566 | 0.53118 ± 0.01556 | 0.52670 ± 0.01711 | 0.70562 ± 0.00858 | 0.97326 ± 0.01014 | 0.26985 ± 0.02506 | 899.00000 ± 0.00000 | 20.21081 ± 0.15326 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.58060 ± 0.02010 | 0.54480 ± 0.02184 | 0.51403 ± 0.01304 | 0.50566 ± 0.01671 | 0.51244 ± 0.01460 | 0.51403 ± 0.01304 | 0.68201 ± 0.00601 | 0.99348 ± 0.00872 | 0.23816 ± 0.02143 | 18,557,531 ± 0.00000 | 185,223,012 ± 0.00000 | 116.61239 ± 2.29721 |
| IGTD | 0.42677 ± 0.00000 | 0.42534 ± 0.00000 | 0.42986 ± 0.00000 | 0.25846 ± 0.00000 | 0.18478 ± 0.00000 | 0.42986 ± 0.00000 | 0.50000 ± 0.00000 | 1.06630 ± 0.00002 | 0.00000 ± 0.00000 | 18,756,425 ± 0.00000 | 961,520,359 ± 0.00000 | 148.18030 ± 1.54484 |
| REFINED | 0.61028 ± 0.02942 | 0.60543 ± 0.02008 | 0.55747 ± 0.01675 | 0.55971 ± 0.01710 | 0.57576 ± 0.01606 | 0.55747 ± 0.01675 | 0.73846 ± 0.01551 | 0.91166 ± 0.01975 | 0.32415 ± 0.02569 | 8,034,345 ± 0.00000 | 405,902,263 ± 0.00000 | 131.15941 ± 5.83637 |
| DistanceMatrix | 0.62405 ± 0.04610 | 0.57014 ± 0.03247 | 0.52941 ± 0.01534 | 0.52638 ± 0.01697 | 0.53164 ± 0.01732 | 0.52941 ± 0.01534 | 0.70803 ± 0.00756 | 0.99914 ± 0.03235 | 0.27248 ± 0.02357 | 4,389,851 ± 0.00000 | 154,472,600 ± 0.00000 | 128.09730 ± 3.34499 |
| BarGraph | 0.62464 ± 0.01715 | 0.59186 ± 0.01849 | 0.56290 ± 0.01452 | 0.56045 ± 0.01604 | 0.56920 ± 0.01562 | 0.56290 ± 0.01452 | 0.72685 ± 0.00615 | 0.94493 ± 0.01276 | 0.32581 ± 0.02336 | 3,222,435 ± 0.00000 | 31,831,688 ± 0.00000 | 70.66814 ± 2.09838 |
| Combination | 0.59476 ± 0.00835 | 0.60091 ± 0.01735 | 0.54480 ± 0.02650 | 0.53989 ± 0.02733 | 0.55690 ± 0.01973 | 0.54480 ± 0.02650 | 0.73836 ± 0.00875 | 0.92103 ± 0.01228 | 0.29605 ± 0.03647 | 1,152,003 ± 0.00000 | 23,116,164 ± 0.00000 | 50.64266 ± 3.07093 |
| SuperTML | 0.62250 ± 0.01884 | 0.59457 ± 0.01180 | 0.52851 ± 0.00671 | 0.52090 ± 0.01065 | 0.52975 ± 0.02017 | 0.52851 ± 0.00671 | 0.71625 ± 0.00255 | 0.95196 ± 0.02299 | 0.26546 ± 0.01895 | 14,585,091 ± 0.00000 | 480,755,835 ± 0.00000 | 123.16419 ± 3.17526 |
| FeatureWrap | 0.52434 ± 0.01430 | 0.56652 ± 0.00870 | 0.51131 ± 0.01154 | 0.49867 ± 0.02234 | 0.50469 ± 0.01292 | 0.51131 ± 0.01154 | 0.66903 ± 0.00290 | 1.00951 ± 0.00536 | 0.22990 ± 0.01796 | 9,119,321 ± 0.00000 | 89,289,244 ± 0.00000 | 134.36640 ± 1.40692 |
| BIE | 0.59573 ± 0.00771 | 0.58914 ± 0.02741 | 0.55294 ± 0.01821 | 0.55140 ± 0.01781 | 0.56052 ± 0.01137 | 0.55294 ± 0.01821 | 0.71498 ± 0.00598 | 0.94962 ± 0.00646 | 0.30942 ± 0.02454 | 21,438,339 ± 0.00000 | 730,066,308 ± 0.00000 | 124.84714 ± 6.21710 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.57595 ± 0.01134 | 0.57285 ± 0.00686 | 0.49683 ± 0.01409 | 0.48781 ± 0.01639 | 0.48894 ± 0.01589 | 0.49683 ± 0.01409 | 0.68981 ± 0.00179 | 0.99148 ± 0.00483 | 0.20697 ± 0.02791 | 18,560,475 ± 0.00000 | 3,658,451,148 ± 525,865,378.91535 | 117.50083 ± 2.54110 |
| IGTD | 0.60815 ± 0.04145 | 0.56471 ± 0.04793 | 0.52489 ± 0.02950 | 0.51519 ± 0.03628 | 0.52757 ± 0.02946 | 0.52489 ± 0.02950 | 0.69828 ± 0.01713 | 0.97191 ± 0.01441 | 0.25929 ± 0.05176 | 18,356,809 ± 0.00000 | 23,306,968,083 ± 1,754,835,821.31258 | 149.76682 ± 7.78152 |
| REFINED | 0.61125 ± 0.01059 | 0.60272 ± 0.00981 | 0.55113 ± 0.01480 | 0.55077 ± 0.01840 | 0.57143 ± 0.02202 | 0.55113 ± 0.01480 | 0.73435 ± 0.00985 | 0.92641 ± 0.01140 | 0.31665 ± 0.02847 | 7,760,777 ± 0.00000 | 3,748,450,744 ± 740,852,627.99955 | 125.47250 ± 13.94367 |
| DistanceMatrix | 0.64753 ± 0.03200 | 0.56561 ± 0.02217 | 0.54389 ± 0.01930 | 0.54059 ± 0.02547 | 0.55826 ± 0.01901 | 0.54389 ± 0.01930 | 0.71359 ± 0.01572 | 0.98598 ± 0.01211 | 0.30462 ± 0.03669 | 4,368,251 ± 0.00000 | 5,390,830,368 ± 304,416,115.04435 | 150.77362 ± 4.50453 |
| BarGraph | 0.62987 ± 0.01155 | 0.58552 ± 0.02161 | 0.54027 ± 0.03543 | 0.54345 ± 0.03433 | 0.55883 ± 0.03626 | 0.54027 ± 0.03543 | 0.72027 ± 0.02308 | 0.94456 ± 0.02947 | 0.30260 ± 0.05185 | 3,262,851 ± 0.00000 | 1,024,690,320 ± 90,009,869.65352 | 66.23054 ± 0.78443 |
| Combination | 0.59302 ± 0.01491 | 0.60905 ± 0.01136 | 0.55837 ± 0.01855 | 0.55904 ± 0.01354 | 0.57543 ± 0.01271 | 0.55837 ± 0.01855 | 0.74016 ± 0.00807 | 0.91011 ± 0.02151 | 0.32445 ± 0.02101 | 1,167,587 ± 0.00000 | 257,758,240 ± 50,943,945.25477 | 54.89044 ± 0.72794 |
| SuperTML | 0.60737 ± 0.01098 | 0.59728 ± 0.01319 | 0.53122 ± 0.01711 | 0.52844 ± 0.01931 | 0.53484 ± 0.01654 | 0.53122 ± 0.01711 | 0.71292 ± 0.00740 | 0.94419 ± 0.01945 | 0.27085 ± 0.02917 | 14,344,355 ± 0.00000 | 10,194,143,094 ± 895,464,193.631 | 143.16534 ± 2.41321 |
| FeatureWrap | 0.52609 ± 0.00816 | 0.58371 ± 0.00905 | 0.53122 ± 0.00757 | 0.52487 ± 0.00862 | 0.52775 ± 0.00806 | 0.53122 ± 0.00757 | 0.67457 ± 0.00162 | 1.01469 ± 0.00180 | 0.26195 ± 0.01374 | 8,971,289 ± 0.00000 | 4,481,517,712 ± 253,067,916.86262 | 139.72991 ± 11.27500 |
| BIE | 0.59282 ± 0.02763 | 0.56833 ± 0.02428 | 0.54299 ± 0.02619 | 0.54168 ± 0.02300 | 0.54634 ± 0.02360 | 0.54299 ± 0.02619 | 0.70445 ± 0.01312 | 0.95276 ± 0.01201 | 0.29270 ± 0.03527 | 21,571,715 ± 0.00000 | 7,198,581,280 ± 1,422,744,547.91564 | 139.94504 ± 2.70236 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.54394 ± 0.01165 | 0.52851 ± 0.01580 | 0.47602 ± 0.02904 | 0.46387 ± 0.02599 | 0.47440 ± 0.02399 | 0.47602 ± 0.02904 | 0.65797 ± 0.02125 | 1.03012 ± 0.02895 | 0.17912 ± 0.03591 | 13,356,803 ± 0.00000 | 477,365,760 ± 0.00000 | 99.38911 ± 0.98989 |
| IGTD | 0.64093 ± 0.03060 | 0.50860 ± 0.04452 | 0.51131 ± 0.01319 | 0.50027 ± 0.01458 | 0.50829 ± 0.01456 | 0.51131 ± 0.01319 | 0.68163 ± 0.00613 | 1.01187 ± 0.04742 | 0.23748 ± 0.02476 | 11,252,291 ± 0.00000 | 201,483,328 ± 0.00000 | 59.34190 ± 1.03583 |
| REFINED | 0.60330 ± 0.02913 | 0.56923 ± 0.03481 | 0.52398 ± 0.01480 | 0.52086 ± 0.01808 | 0.53631 ± 0.02372 | 0.52398 ± 0.01480 | 0.69901 ± 0.01071 | 1.01439 ± 0.05581 | 0.27037 ± 0.01940 | 1,171,875 ± 0.00000 | 21,680,800 ± 0.00000 | 86.79629 ± 6.35222 |
| DistanceMatrix | 0.59302 ± 0.02564 | 0.59276 ± 0.02170 | 0.55475 ± 0.02707 | 0.55731 ± 0.02529 | 0.56809 ± 0.02266 | 0.55475 ± 0.02707 | 0.72989 ± 0.01112 | 0.92750 ± 0.01318 | 0.32104 ± 0.03662 | 764,595 ± 0.00000 | 124,157,184 ± 0.00000 | 41.15781 ± 0.98381 |
| BarGraph | 0.64171 ± 0.00896 | 0.59728 ± 0.01061 | 0.53394 ± 0.02437 | 0.53428 ± 0.02706 | 0.54430 ± 0.02776 | 0.53394 ± 0.02437 | 0.71769 ± 0.00987 | 0.95512 ± 0.02738 | 0.28367 ± 0.04156 | 1,114,931 ± 0.00000 | 191,019,072 ± 0.00000 | 67.33545 ± 4.62728 |
| Combination | 0.60892 ± 0.00926 | 0.59095 ± 0.01304 | 0.54751 ± 0.01781 | 0.54866 ± 0.01771 | 0.56023 ± 0.01100 | 0.54751 ± 0.01781 | 0.72817 ± 0.00822 | 0.93757 ± 0.02026 | 0.30937 ± 0.02199 | 26,275 ± 0.00000 | 8,797,568 ± 0.00000 | 37.43239 ± 2.38739 |
| SuperTML | 0.59224 ± 0.01423 | 0.57828 ± 0.01793 | 0.53937 ± 0.02424 | 0.52629 ± 0.01800 | 0.55776 ± 0.02714 | 0.53937 ± 0.02424 | 0.71672 ± 0.00634 | 0.95154 ± 0.01303 | 0.28218 ± 0.02980 | 301,923 ± 0.00000 | 591,587,968 ± 0.00000 | 129.37107 ± 0.30095 |
| FeatureWrap | 0.56683 ± 0.03371 | 0.56018 ± 0.02294 | 0.50769 ± 0.01613 | 0.49073 ± 0.02660 | 0.50451 ± 0.01334 | 0.50769 ± 0.01613 | 0.68416 ± 0.01095 | 0.98980 ± 0.02288 | 0.21870 ± 0.03122 | 47,035 ± 0.00000 | 1,170,576 ± 0.00000 | 37.97507 ± 3.29608 |
| BIE | 0.62619 ± 0.03554 | 0.60000 ± 0.00991 | 0.55294 ± 0.01256 | 0.54402 ± 0.01736 | 0.55550 ± 0.00999 | 0.55294 ± 0.01256 | 0.73294 ± 0.01282 | 0.93518 ± 0.01830 | 0.30180 ± 0.01825 | 1,531,619 ± 0.00000 | 1,648,116,864 ± 0.00000 | 75.70332 ± 0.15330 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.58138 ± 0.02148 | 0.54570 ± 0.02137 | 0.48688 ± 0.01909 | 0.47571 ± 0.02089 | 0.48561 ± 0.02730 | 0.48688 ± 0.01909 | 0.66685 ± 0.01691 | 1.06727 ± 0.05824 | 0.19771 ± 0.03222 | 11,121,187 ± 0.00000 | 5,201,861,280 ± 0.00000 | 58.12462 ± 1.90735 |
| IGTD | 0.60446 ± 0.05032 | 0.54118 ± 0.02908 | 0.50045 ± 0.01342 | 0.47949 ± 0.03770 | 0.48193 ± 0.06481 | 0.50045 ± 0.01342 | 0.67919 ± 0.00750 | 1.03052 ± 0.03764 | 0.21786 ± 0.04125 | 10,765,475 ± 0.00000 | 2,205,616,160 ± 0.00000 | 67.84435 ± 0.69047 |
| REFINED | 0.61455 ± 0.02869 | 0.55566 ± 0.02507 | 0.52127 ± 0.01127 | 0.52341 ± 0.00904 | 0.54837 ± 0.01201 | 0.52127 ± 0.01127 | 0.70467 ± 0.01246 | 0.99529 ± 0.03033 | 0.27771 ± 0.01275 | 1,184,771 ± 0.00000 | 238,771,104 ± 0.00000 | 104.82458 ± 3.45941 |
| DistanceMatrix | 0.63220 ± 0.01282 | 0.61810 ± 0.02977 | 0.54208 ± 0.02179 | 0.54219 ± 0.02130 | 0.56618 ± 0.01260 | 0.54208 ± 0.02179 | 0.71733 ± 0.01292 | 0.94284 ± 0.01894 | 0.30570 ± 0.02134 | 699,059 ± 0.00000 | 1,364,290,400 ± 0.00000 | 33.44982 ± 2.31255 |
| BarGraph | 0.66149 ± 0.03365 | 0.60633 ± 0.04147 | 0.53575 ± 0.00248 | 0.53573 ± 0.00406 | 0.55262 ± 0.02107 | 0.53575 ± 0.00248 | 0.71719 ± 0.00791 | 0.95926 ± 0.03626 | 0.28710 ± 0.01162 | 1,105,427 ± 0.00000 | 2,101,001,056 ± 0.00000 | 56.81205 ± 2.08185 |
| Combination | 0.63628 ± 0.02356 | 0.60091 ± 0.02226 | 0.54480 ± 0.02650 | 0.54351 ± 0.02811 | 0.54956 ± 0.03032 | 0.54480 ± 0.02650 | 0.71769 ± 0.01576 | 0.94702 ± 0.02667 | 0.29524 ± 0.04483 | 33,571 ± 0.00000 | 96,932,704 ± 0.00000 | 38.03557 ± 2.37867 |
| SuperTML | 0.60175 ± 0.01094 | 0.57738 ± 0.01380 | 0.54751 ± 0.01534 | 0.54463 ± 0.01651 | 0.55968 ± 0.01551 | 0.54751 ± 0.01534 | 0.72676 ± 0.00391 | 0.92772 ± 0.00556 | 0.30052 ± 0.02404 | 353,731 ± 0.00000 | 6,508,601,440 ± 0.00000 | 136.04745 ± 2.61454 |
| FeatureWrap | 0.58332 ± 0.02737 | 0.52941 ± 0.02373 | 0.51765 ± 0.01304 | 0.51622 ± 0.01403 | 0.53846 ± 0.00605 | 0.51765 ± 0.01304 | 0.68590 ± 0.00847 | 1.00077 ± 0.02192 | 0.26501 ± 0.01341 | 109,771 ± 0.00000 | 14,251,248 ± 0.00000 | 57.12546 ± 1.01150 |
| BIE | 0.65936 ± 0.02150 | 0.56742 ± 0.01042 | 0.54480 ± 0.00405 | 0.54588 ± 0.00203 | 0.55830 ± 0.01191 | 0.54480 ± 0.00405 | 0.72639 ± 0.01346 | 0.95990 ± 0.02545 | 0.30242 ± 0.00778 | 1,648,579 ± 0.00000 | 1,648,350,240 ± 0.00000 | 77.10235 ± 0.14990 |
Cnae-9
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | XGBoost | 0.95432 ± 0.00338 | 0.95461 ± 0.00345 | 8.44052 ± 0.11371 | — | — |
| MLP | MLP | 0.97037 ± 0.00805 | 0.96992 ± 0.00846 | 10.34689 ± 0.44999 | 706,057 ± 0.00000 | 1,411,072 ± 0.00000 |
| ViT | IGTD | 0.93827 ± 0.01310 | 0.93838 ± 0.01313 | 26.78283 ± 1.99133 | 476,097 ± 0.00000 | 9,725,388 ± 0.00000 |
| ViT+MLP | SuperTML | 0.97037 ± 0.00517 | 0.97035 ± 0.00532 | 42.45165 ± 1.58963 | 3,207,145 ± 0.00000 | 10,130,914,304 ± 421,536,368.16605 |
| CNN | SuperTML | 0.94691 ± 0.00552 | 0.94697 ± 0.00573 | 155.72271 ± 0.08343 | 2,081,961 ± 0.00000 | 2,760,667,584 ± 0.00000 |
| CNN+MLP | SuperTML | 0.96543 ± 0.01033 | 0.96571 ± 0.00999 | 157.23238 ± 0.21957 | 2,804,841 ± 0.00000 | 30,383,234,816 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 1.00000 ± 0.00000 | 0.93210 ± 0.00756 | 0.93951 ± 0.00805 | 0.94003 ± 0.00780 | 0.94732 ± 0.00626 | 0.93951 ± 0.00805 | 6.54664 ± 0.10359 | — | — |
| LightGBM | 0.98809 ± 0.00162 | 0.94444 ± 0.00000 | 0.94938 ± 0.00805 | 0.95004 ± 0.00766 | 0.95597 ± 0.00687 | 0.94938 ± 0.00805 | 8.07665 ± 1.28849 | — | — |
| XGBoost | 0.99868 ± 0.00000 | 0.94444 ± 0.00000 | 0.95432 ± 0.00338 | 0.95461 ± 0.00345 | 0.95848 ± 0.00428 | 0.95432 ± 0.00338 | 8.44052 ± 0.11371 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.99788 ± 0.00201 | 0.96914 ± 0.00976 | 0.97037 ± 0.00805 | 0.96992 ± 0.00846 | 0.97239 ± 0.00756 | 0.97037 ± 0.00805 | 0.99961 ± 0.00018 | 0.10320 ± 0.01376 | 0.96701 ± 0.00891 | 706,057 ± 0.00000 | 1,411,072 ± 0.00000 | 10.34689 ± 0.44999 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.70635 ± 0.04166 | 0.67407 ± 0.02019 | 0.68642 ± 0.02243 | 0.68280 ± 0.01561 | 0.70297 ± 0.01509 | 0.68642 ± 0.02243 | 0.93421 ± 0.00295 | 0.93329 ± 0.01252 | 0.65048 ± 0.02538 | 3,142,689 ± 0.00000 | 31,518,296 ± 0.00000 | 49.77751 ± 2.40462 |
| IGTD | 0.99868 ± 0.00296 | 0.92593 ± 0.01852 | 0.93827 ± 0.01310 | 0.93838 ± 0.01313 | 0.94212 ± 0.01160 | 0.93827 ± 0.01310 | 0.99494 ± 0.00151 | 0.23574 ± 0.03603 | 0.93106 ± 0.01450 | 476,097 ± 0.00000 | 9,725,388 ± 0.00000 | 26.78283 ± 1.99133 |
| REFINED | 0.99550 ± 0.00865 | 0.93210 ± 0.01574 | 0.92346 ± 0.02849 | 0.92387 ± 0.02848 | 0.93110 ± 0.02637 | 0.92346 ± 0.02849 | 0.99342 ± 0.00305 | 0.32760 ± 0.05950 | 0.91483 ± 0.03174 | 1,269,455 ± 0.00000 | 12,377,946 ± 0.00000 | 51.73347 ± 8.33281 |
| BarGraph | 0.99709 ± 0.00367 | 0.92716 ± 0.00916 | 0.93333 ± 0.01821 | 0.93401 ± 0.01758 | 0.94037 ± 0.01197 | 0.93333 ± 0.01821 | 0.99698 ± 0.00196 | 0.22455 ± 0.07629 | 0.92588 ± 0.01960 | 214,697,577 ± 0.00000 | 1,724,899,336 ± 0.00000 | 378.47980 ± 12.39942 |
| SuperTML | 0.39365 ± 0.08137 | 0.39506 ± 0.06984 | 0.39876 ± 0.06319 | 0.34760 ± 0.07799 | 0.47892 ± 0.09961 | 0.39876 ± 0.06319 | 0.82871 ± 0.02798 | 1.51644 ± 0.14370 | 0.37221 ± 0.02346 | 2,499,945 ± 0.00000 | 251,634,112 ± 0.00000 | 32.09513 ± 0.48480 |
| FeatureWrap | 0.96746 ± 0.01174 | 0.81605 ± 0.01187 | 0.75926 ± 0.01746 | 0.76072 ± 0.01852 | 0.79167 ± 0.01411 | 0.75926 ± 0.01746 | 0.97051 ± 0.00461 | 0.77868 ± 0.08332 | 0.73310 ± 0.01861 | 17,470,447 ± 0.00000 | 174,454,188 ± 0.00000 | 78.42049 ± 11.15532 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.99815 ± 0.00221 | 0.95679 ± 0.00756 | 0.96049 ± 0.01883 | 0.96042 ± 0.01906 | 0.96218 ± 0.01829 | 0.96049 ± 0.01883 | 0.99859 ± 0.00162 | 0.13929 ± 0.07387 | 0.95578 ± 0.02106 | 3,893,025 ± 0.00000 | 464,977,088 ± 91,899,166.11703 | 51.20903 ± 5.63295 |
| IGTD | 0.99815 ± 0.00274 | 0.95803 ± 0.00916 | 0.95556 ± 0.01408 | 0.95568 ± 0.01408 | 0.95874 ± 0.01229 | 0.95556 ± 0.01408 | 0.99784 ± 0.00181 | 0.22177 ± 0.09474 | 0.95040 ± 0.01557 | 1,218,401 ± 0.00000 | 269,517,528 ± 23,674,701.60606 | 36.43950 ± 1.83848 |
| REFINED | 0.99974 ± 0.00059 | 0.95803 ± 0.00517 | 0.96173 ± 0.00517 | 0.96194 ± 0.00487 | 0.96512 ± 0.00333 | 0.96173 ± 0.00517 | 0.99862 ± 0.00102 | 0.14492 ± 0.04696 | 0.95734 ± 0.00561 | 1,989,455 ± 0.00000 | 648,339,608 ± 36,611,247.47466 | 75.39355 ± 2.91066 |
| SuperTML | 0.99947 ± 0.00072 | 0.97037 ± 0.00916 | 0.97037 ± 0.00517 | 0.97035 ± 0.00532 | 0.97305 ± 0.00492 | 0.97037 ± 0.00517 | 0.99973 ± 0.00005 | 0.09663 ± 0.01046 | 0.96701 ± 0.00575 | 3,207,145 ± 0.00000 | 10,130,914,304 ± 421,536,368.16605 | 42.45165 ± 1.58963 |
| FeatureWrap | 0.98783 ± 0.01648 | 0.94074 ± 0.03255 | 0.94568 ± 0.01598 | 0.94587 ± 0.01549 | 0.95165 ± 0.01262 | 0.94568 ± 0.01598 | 0.99831 ± 0.00069 | 0.21044 ± 0.05732 | 0.93962 ± 0.01761 | 18,746,639 ± 0.00000 | 2,513,403,744 ± 496,755,031.91467 | 94.19557 ± 3.95154 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.79100 ± 0.01282 | 0.67654 ± 0.01203 | 0.68148 ± 0.01549 | 0.68115 ± 0.01536 | 0.69369 ± 0.01499 | 0.68148 ± 0.01549 | 0.93206 ± 0.00367 | 0.96300 ± 0.03732 | 0.64317 ± 0.01736 | 77,937 ± 0.00000 | 3,614,528 ± 0.00000 | 18.50549 ± 0.88259 |
| IGTD | 1.00000 ± 0.00000 | 0.86914 ± 0.02908 | 0.93704 ± 0.01537 | 0.93723 ± 0.01538 | 0.94180 ± 0.01521 | 0.93704 ± 0.01537 | 0.99752 ± 0.00138 | 0.22672 ± 0.07117 | 0.92973 ± 0.01727 | 190,897 ± 0.00000 | 22,969,392 ± 0.00000 | 23.99849 ± 3.09947 |
| REFINED | 0.99180 ± 0.00616 | 0.92099 ± 0.02484 | 0.91358 ± 0.00756 | 0.91345 ± 0.00719 | 0.92283 ± 0.00767 | 0.91358 ± 0.00756 | 0.99358 ± 0.00182 | 0.37951 ± 0.03106 | 0.90395 ± 0.00863 | 733,137 ± 0.00000 | 63,914,592 ± 0.00000 | 39.24781 ± 1.83563 |
| SuperTML | 1.00000 ± 0.00000 | 0.92469 ± 0.00805 | 0.94691 ± 0.00552 | 0.94697 ± 0.00573 | 0.95051 ± 0.00624 | 0.94691 ± 0.00552 | 0.99771 ± 0.00068 | 0.23146 ± 0.01665 | 0.94072 ± 0.00625 | 2,081,961 ± 0.00000 | 2,760,667,584 ± 0.00000 | 155.72271 ± 0.08343 |
| FeatureWrap | 0.99418 ± 0.00424 | 0.91975 ± 0.01512 | 0.88148 ± 0.01104 | 0.88317 ± 0.01134 | 0.89928 ± 0.01478 | 0.88148 ± 0.01104 | 0.99107 ± 0.00173 | 0.53426 ± 0.04917 | 0.86863 ± 0.01292 | 11,985,833 ± 0.00000 | 1,669,530,816 ± 0.00000 | 77.13566 ± 0.42878 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.99762 ± 0.00217 | 0.94938 ± 0.01598 | 0.96420 ± 0.00276 | 0.96424 ± 0.00263 | 0.96609 ± 0.00225 | 0.96420 ± 0.00276 | 0.99911 ± 0.00047 | 0.10987 ± 0.02834 | 0.95995 ± 0.00305 | 820,465 ± 0.00000 | 56,082,752 ± 0.00000 | 29.90100 ± 2.27126 |
| IGTD | 0.99894 ± 0.00237 | 0.94815 ± 0.01831 | 0.95556 ± 0.00805 | 0.95514 ± 0.00828 | 0.95896 ± 0.00707 | 0.95556 ± 0.00805 | 0.99932 ± 0.00017 | 0.16153 ± 0.04349 | 0.95052 ± 0.00886 | 1,067,889 ± 0.00000 | 271,943,232 ± 0.00000 | 30.57734 ± 1.64419 |
| REFINED | 0.99868 ± 0.00229 | 0.94815 ± 0.01487 | 0.95185 ± 0.01187 | 0.95199 ± 0.01212 | 0.95589 ± 0.01141 | 0.95185 ± 0.01187 | 0.99915 ± 0.00040 | 0.15621 ± 0.02966 | 0.94634 ± 0.01320 | 1,422,257 ± 0.00000 | 718,212,000 ± 0.00000 | 42.14406 ± 2.49778 |
| SuperTML | 0.99868 ± 0.00187 | 0.95309 ± 0.00936 | 0.96543 ± 0.01033 | 0.96571 ± 0.00999 | 0.96891 ± 0.00881 | 0.96543 ± 0.01033 | 0.99940 ± 0.00038 | 0.13416 ± 0.03825 | 0.96151 ± 0.01145 | 2,804,841 ± 0.00000 | 30,383,234,816 ± 0.00000 | 157.23238 ± 0.21957 |
| FeatureWrap | 0.99815 ± 0.00221 | 0.95803 ± 0.01014 | 0.93580 ± 0.01421 | 0.93599 ± 0.01373 | 0.94377 ± 0.01086 | 0.93580 ± 0.01421 | 0.99883 ± 0.00059 | 0.22689 ± 0.08034 | 0.92877 ± 0.01565 | 12,981,545 ± 0.00000 | 18,386,727,744 ± 0.00000 | 97.10381 ± 4.24365 |
Connect-4
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | XGBoost | 0.86860 ± 0.00059 | 0.73852 ± 0.00118 | 7.46423 ± 0.41959 | — | — |
| MLP | MLP | 0.86300 ± 0.00099 | 0.85441 ± 0.00174 | 137.17053 ± 1.67854 | 66,563 ± 0.00000 | 132,608 ± 0.00000 |
| ViT | Combination | 0.85852 ± 0.00537 | 0.85227 ± 0.00557 | 6,459.70419 ± 737.80948 | 14,165,371 ± 0.00000 | 4,403,208,502,428.7998 ± 9,719,427,985,675.61133 |
| ViT+MLP | IGTD | 0.86819 ± 0.00221 | 0.86365 ± 0.00250 | 3,294.58531 ± 943.89277 | 19,592,315 ± 0.00000 | 1,226,724,971,052.80005 ± 2,725,978,272,247.06592 |
| CNN | BIE | 0.85437 ± 0.00345 | 0.84537 ± 0.00593 | 4,724.28435 ± 433.84260 | 1,606,067 ± 0.00000 | 1,189,191,183,379.19995 ± 2,597,463,716,358.88281 |
| CNN+MLP | BarGraph | 0.85382 ± 0.00278 | 0.84488 ± 0.00467 | 4,804.959 ± 449.91699 | 1,163,859 ± 0.00000 | 519,475,749,942.40002 ± 1,139,923,846,571.62622 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.93083 ± 0.00226 | 0.86303 ± 0.00121 | 0.85506 ± 0.00133 | 0.70725 ± 0.00577 | 0.74560 ± 0.00578 | 0.68951 ± 0.00424 | 181.61038 ± 1.83578 | — | — |
| LightGBM | 0.94523 ± 0.00000 | 0.86452 ± 0.00000 | 0.85554 ± 0.00000 | 0.71701 ± 0.00000 | 0.74147 ± 0.00000 | 0.70200 ± 0.00000 | 3.30468 ± 0.40202 | — | — |
| XGBoost | 0.98862 ± 0.00038 | 0.87279 ± 0.00098 | 0.86860 ± 0.00059 | 0.73852 ± 0.00118 | 0.76687 ± 0.00292 | 0.72174 ± 0.00139 | 7.46423 ± 0.41959 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.93258 ± 0.00333 | 0.87249 ± 0.00218 | 0.86300 ± 0.00099 | 0.85441 ± 0.00174 | 0.85070 ± 0.00185 | 0.86300 ± 0.00099 | 0.95992 ± 0.00038 | 0.35456 ± 0.00105 | 0.71707 ± 0.00233 | 66,563 ± 0.00000 | 132,608 ± 0.00000 | 137.17053 ± 1.67854 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.71345 ± 0.00240 | 0.69485 ± 0.00150 | 0.69743 ± 0.00233 | 0.65065 ± 0.00331 | 0.65303 ± 0.00402 | 0.69743 ± 0.00233 | 0.77163 ± 0.00114 | 0.70665 ± 0.00229 | 0.29669 ± 0.00618 | 8,472,451 ± 0.00000 | 899,883,414,152.80005 ± 2,001,077,131,734.39478 | 3,734.34874 ± 970.17133 |
| IGTD | 0.90747 ± 0.01085 | 0.86424 ± 0.00429 | 0.85410 ± 0.00323 | 0.84736 ± 0.00454 | 0.84377 ± 0.00487 | 0.85410 ± 0.00323 | 0.95671 ± 0.00134 | 0.38029 ± 0.00345 | 0.70014 ± 0.00722 | 19,939,899 ± 0.00000 | 498,074,710,800 ± 1,106,963,680,989.76514 | 2,967.25645 ± 864.50463 |
| REFINED | 0.90624 ± 0.01178 | 0.86136 ± 0.00258 | 0.85717 ± 0.00204 | 0.85050 ± 0.00308 | 0.84701 ± 0.00320 | 0.85717 ± 0.00204 | 0.95768 ± 0.00105 | 0.35784 ± 0.00402 | 0.70651 ± 0.00349 | 6,339,465 ± 0.00000 | 7,611,645,317,385.59961 ± 16,910,428,256,738.60742 | 4,837.46139 ± 113.28264 |
| DistanceMatrix | 0.91426 ± 0.01254 | 0.86442 ± 0.00132 | 0.85777 ± 0.00343 | 0.85384 ± 0.00386 | 0.85109 ± 0.00423 | 0.85777 ± 0.00343 | 0.95841 ± 0.00125 | 0.37113 ± 0.00475 | 0.71012 ± 0.00675 | 15,615,579 ± 0.00000 | 353,206,830,993.59998 ± 767,325,631,115.39844 | 5,650.87453 ± 828.55672 |
| BarGraph | 0.90582 ± 0.01062 | 0.85976 ± 0.00390 | 0.85313 ± 0.00217 | 0.84707 ± 0.00316 | 0.84343 ± 0.00380 | 0.85313 ± 0.00217 | 0.95580 ± 0.00126 | 0.37646 ± 0.00563 | 0.69867 ± 0.00499 | 7,677,019 ± 0.00000 | 260,700,949,174.39999 ± 573,462,935,121.85742 | 4,836.73781 ± 350.10447 |
| Combination | 0.91602 ± 0.01066 | 0.86643 ± 0.00471 | 0.85852 ± 0.00537 | 0.85227 ± 0.00557 | 0.84892 ± 0.00580 | 0.85852 ± 0.00537 | 0.95984 ± 0.00207 | 0.36214 ± 0.00596 | 0.70891 ± 0.00975 | 14,165,371 ± 0.00000 | 4,403,208,502,428.7998 ± 9,719,427,985,675.61133 | 6,459.70419 ± 737.80948 |
| SuperTML | 0.90546 ± 0.00765 | 0.85660 ± 0.00373 | 0.84626 ± 0.00304 | 0.84026 ± 0.00287 | 0.83728 ± 0.00336 | 0.84626 ± 0.00304 | 0.95164 ± 0.00133 | 0.38937 ± 0.00557 | 0.68451 ± 0.00828 | 17,791,747 ± 0.00000 | 433,472,959,452 ± 953,674,396,877.40051 | 7,495.51417 ± 870.92907 |
| FeatureWrap | 0.91074 ± 0.00977 | 0.86006 ± 0.00228 | 0.85054 ± 0.00233 | 0.84247 ± 0.00421 | 0.83902 ± 0.00431 | 0.85054 ± 0.00233 | 0.95429 ± 0.00065 | 0.38311 ± 0.00555 | 0.69225 ± 0.00492 | 2,540,315 ± 0.00000 | 178,853,395,445.60001 ± 395,507,779,949.31891 | 2,406.81428 ± 636.98173 |
| BIE | 0.90568 ± 0.01360 | 0.86290 ± 0.00319 | 0.85528 ± 0.00200 | 0.84804 ± 0.00316 | 0.84415 ± 0.00328 | 0.85528 ± 0.00200 | 0.95760 ± 0.00158 | 0.36426 ± 0.00243 | 0.70120 ± 0.00352 | 13,433,115 ± 0.00000 | 1,045,166,154,542.40002 ± 2,307,449,081,091.5 | 5,775.03304 ± 305.90916 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.93435 ± 0.00783 | 0.87204 ± 0.00182 | 0.86282 ± 0.00318 | 0.85837 ± 0.00369 | 0.85545 ± 0.00413 | 0.86282 ± 0.00318 | 0.96241 ± 0.00079 | 0.34073 ± 0.00374 | 0.71943 ± 0.00699 | 8,640,483 ± 0.00000 | 912,817,909,791.19995 ± 2,020,171,485,487.94141 | 4,188.90154 ± 1,125.38759 |
| IGTD | 0.94931 ± 0.00681 | 0.87547 ± 0.00193 | 0.86819 ± 0.00221 | 0.86365 ± 0.00250 | 0.86086 ± 0.00265 | 0.86819 ± 0.00221 | 0.96399 ± 0.00093 | 0.33538 ± 0.00437 | 0.73041 ± 0.00378 | 19,592,315 ± 0.00000 | 1,226,724,971,052.80005 ± 2,725,978,272,247.06592 | 3,294.58531 ± 943.89277 |
| REFINED | 0.92572 ± 0.00830 | 0.87069 ± 0.00116 | 0.86227 ± 0.00112 | 0.85416 ± 0.00120 | 0.85076 ± 0.00105 | 0.86227 ± 0.00112 | 0.95921 ± 0.00082 | 0.35667 ± 0.00236 | 0.71667 ± 0.00202 | 6,258,761 ± 0.00000 | 14,030,313,714,328 ± 29,438,466,150,706.24609 | 5,091.08685 ± 192.75738 |
| DistanceMatrix | 0.93294 ± 0.00696 | 0.87158 ± 0.00231 | 0.86499 ± 0.00201 | 0.86004 ± 0.00229 | 0.85688 ± 0.00247 | 0.86499 ± 0.00201 | 0.96225 ± 0.00082 | 0.33958 ± 0.00148 | 0.72275 ± 0.00374 | 15,258,651 ± 0.00000 | 1,364,578,640,235.19995 ± 3,011,336,350,380.71533 | 6,505.18565 ± 663.34706 |
| BarGraph | 0.94892 ± 0.00686 | 0.87454 ± 0.00135 | 0.86663 ± 0.00173 | 0.86171 ± 0.00198 | 0.85867 ± 0.00222 | 0.86663 ± 0.00173 | 0.96328 ± 0.00055 | 0.33884 ± 0.00413 | 0.72670 ± 0.00392 | 7,939,931 ± 0.00000 | 440,659,712,818.40002 ± 968,471,046,722.47913 | 5,125.7472 ± 535.15380 |
| Combination | 0.93725 ± 0.00482 | 0.87318 ± 0.00152 | 0.86489 ± 0.00139 | 0.85968 ± 0.00188 | 0.85646 ± 0.00213 | 0.86489 ± 0.00139 | 0.96266 ± 0.00101 | 0.33884 ± 0.00309 | 0.72284 ± 0.00315 | 14,093,339 ± 0.00000 | 7,161,710,259,286.40039 ± 15,826,396,161,415.5957 | 6,977.73327 ± 910.96092 |
| SuperTML | 0.92000 ± 0.00518 | 0.86990 ± 0.00179 | 0.86140 ± 0.00154 | 0.85271 ± 0.00345 | 0.84871 ± 0.00379 | 0.86140 ± 0.00154 | 0.96065 ± 0.00079 | 0.34802 ± 0.00327 | 0.71263 ± 0.00454 | 17,883,843 ± 0.00000 | 963,737,054,338.40002 ± 2,126,847,466,896.84741 | 10,616.86089 ± 2,455.20884 |
| FeatureWrap | 0.93592 ± 0.00888 | 0.87239 ± 0.00134 | 0.86357 ± 0.00130 | 0.85749 ± 0.00301 | 0.85407 ± 0.00360 | 0.86357 ± 0.00130 | 0.96204 ± 0.00118 | 0.34445 ± 0.00416 | 0.71896 ± 0.00308 | 2,646,683 ± 0.00000 | 1,246,668,889,986.3999 ± 2,737,963,693,406.41064 | 5,269.05582 ± 1,853.4156 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.71220 ± 0.00259 | 0.69657 ± 0.00198 | 0.69503 ± 0.00269 | 0.64016 ± 0.00317 | 0.65104 ± 0.00801 | 0.69503 ± 0.00269 | 0.76540 ± 0.00230 | 0.71344 ± 0.00330 | 0.27740 ± 0.00693 | 133,307 ± 0.00000 | 13,548,962,240 ± 30,106,367,691.06504 | 1,148.86206 ± 355.98040 |
| IGTD | 0.90703 ± 0.02432 | 0.85159 ± 0.00558 | 0.84454 ± 0.00520 | 0.83759 ± 0.00997 | 0.83480 ± 0.01118 | 0.84454 ± 0.00520 | 0.95032 ± 0.00418 | 0.39911 ± 0.00688 | 0.67885 ± 0.01424 | 3,572,451 ± 0.00000 | 210,226,552,876.79999 ± 382,063,806,970.60919 | 1,462.19425 ± 461.35553 |
| REFINED | 0.89683 ± 0.01074 | 0.85354 ± 0.00279 | 0.84342 ± 0.00310 | 0.83448 ± 0.00458 | 0.83022 ± 0.00499 | 0.84342 ± 0.00310 | 0.94878 ± 0.00256 | 0.39481 ± 0.00996 | 0.67599 ± 0.00773 | 3,063,971 ± 0.00000 | 159,951,752,448 ± 283,078,091,946.64594 | 1,464.93873 ± 470.53684 |
| DistanceMatrix | 0.90649 ± 0.02135 | 0.85256 ± 0.00489 | 0.84616 ± 0.00208 | 0.83696 ± 0.00625 | 0.83460 ± 0.00646 | 0.84616 ± 0.00208 | 0.95029 ± 0.00294 | 0.39819 ± 0.01003 | 0.68102 ± 0.00752 | 1,708,867 ± 0.00000 | 3,491,576,535,427.2002 ± 7,707,901,491,666.37207 | 4,964.70239 ± 123.36804 |
| BarGraph | 0.90792 ± 0.01282 | 0.85946 ± 0.00354 | 0.85413 ± 0.00312 | 0.84797 ± 0.00422 | 0.84495 ± 0.00413 | 0.85413 ± 0.00312 | 0.95584 ± 0.00151 | 0.37566 ± 0.00614 | 0.70135 ± 0.00551 | 1,110,579 ± 0.00000 | 311,607,712,003.20001 ± 679,867,503,774.60254 | 4,512.3646 ± 349.22010 |
| Combination | 0.90712 ± 0.01527 | 0.85490 ± 0.00365 | 0.84616 ± 0.00195 | 0.84059 ± 0.00398 | 0.83862 ± 0.00432 | 0.84616 ± 0.00195 | 0.95210 ± 0.00160 | 0.39418 ± 0.00743 | 0.68624 ± 0.00321 | 3,359,267 ± 0.00000 | 3,728,836,729,651.2002 ± 7,992,908,531,108.56445 | 7,634.51986 ± 404.33011 |
| SuperTML | 0.90867 ± 0.00832 | 0.86392 ± 0.00210 | 0.85228 ± 0.00144 | 0.84541 ± 0.00262 | 0.84210 ± 0.00250 | 0.85228 ± 0.00144 | 0.95521 ± 0.00071 | 0.37773 ± 0.00645 | 0.69723 ± 0.00308 | 5,266,899 ± 0.00000 | 2,141,033,393,254.3999 ± 4,678,190,253,192.8623 | 7,420.98223 ± 739.91857 |
| FeatureWrap | 0.90654 ± 0.01187 | 0.85410 ± 0.00371 | 0.85060 ± 0.00232 | 0.84471 ± 0.00535 | 0.84197 ± 0.00687 | 0.85060 ± 0.00232 | 0.95319 ± 0.00077 | 0.38091 ± 0.00653 | 0.69344 ± 0.00718 | 2,757,747 ± 0.00000 | 375,817,308,748.79999 ± 829,679,119,080.63367 | 1,686.67107 ± 572.40545 |
| BIE | 0.90377 ± 0.01335 | 0.85891 ± 0.00386 | 0.85437 ± 0.00345 | 0.84537 ± 0.00593 | 0.84220 ± 0.00583 | 0.85437 ± 0.00345 | 0.95548 ± 0.00273 | 0.37063 ± 0.00619 | 0.69920 ± 0.00932 | 1,606,067 ± 0.00000 | 1,189,191,183,379.19995 ± 2,597,463,716,358.88281 | 4,724.28435 ± 433.84260 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.89611 ± 0.00795 | 0.85686 ± 0.00275 | 0.84997 ± 0.00207 | 0.83822 ± 0.00473 | 0.83459 ± 0.00466 | 0.84997 ± 0.00207 | 0.95321 ± 0.00126 | 0.37265 ± 0.00327 | 0.68654 ± 0.00690 | 378,283 ± 0.00000 | 11,118,993,590.4 ± 24,616,967,503.58926 | 1,352.04697 ± 421.20323 |
| IGTD | 0.89933 ± 0.01484 | 0.84849 ± 0.00475 | 0.84190 ± 0.00583 | 0.83342 ± 0.00745 | 0.82935 ± 0.00783 | 0.84190 ± 0.00583 | 0.94754 ± 0.00211 | 0.40304 ± 0.00608 | 0.67222 ± 0.01395 | 3,675,971 ± 0.00000 | 208,189,100,467.20001 ± 461,916,824,304.87598 | 1,643.26583 ± 530.95584 |
| REFINED | 0.91310 ± 0.01035 | 0.84983 ± 0.00300 | 0.84440 ± 0.00274 | 0.83628 ± 0.00393 | 0.83282 ± 0.00401 | 0.84440 ± 0.00274 | 0.94989 ± 0.00070 | 0.39970 ± 0.01150 | 0.67935 ± 0.00697 | 3,128,355 ± 0.00000 | 175,697,881,356.79999 ± 389,773,617,625.3717 | 1,751.01563 ± 586.83492 |
| DistanceMatrix | 0.88316 ± 0.00763 | 0.85340 ± 0.00248 | 0.84664 ± 0.00431 | 0.83343 ± 0.00459 | 0.83062 ± 0.00448 | 0.84664 ± 0.00431 | 0.94989 ± 0.00090 | 0.39532 ± 0.01196 | 0.68039 ± 0.01146 | 1,723,971 ± 0.00000 | 5,095,256,195,558.40039 ± 11,211,795,084,795.75391 | 5,155.71169 ± 232.70114 |
| BarGraph | 0.89839 ± 0.01132 | 0.86067 ± 0.00470 | 0.85382 ± 0.00278 | 0.84488 ± 0.00467 | 0.84167 ± 0.00373 | 0.85382 ± 0.00278 | 0.95566 ± 0.00225 | 0.37123 ± 0.00794 | 0.69766 ± 0.00579 | 1,163,859 ± 0.00000 | 519,475,749,942.40002 ± 1,139,923,846,571.62622 | 4,804.959 ± 449.91699 |
| Combination | 0.89388 ± 0.00351 | 0.85254 ± 0.00228 | 0.84843 ± 0.00255 | 0.83873 ± 0.00320 | 0.83518 ± 0.00400 | 0.84843 ± 0.00255 | 0.95196 ± 0.00089 | 0.38681 ± 0.00683 | 0.68724 ± 0.00706 | 2,971,939 ± 0.00000 | 15,843,091,900,857.59961 ± 34,910,752,920,593.26172 | 7,442.73934 ± 63.86921 |
| SuperTML | 0.89551 ± 0.00672 | 0.86323 ± 0.00234 | 0.85281 ± 0.00075 | 0.84373 ± 0.00471 | 0.84058 ± 0.00417 | 0.85281 ± 0.00075 | 0.95540 ± 0.00103 | 0.36847 ± 0.00559 | 0.69559 ± 0.00266 | 5,463,507 ± 0.00000 | 5,610,715,454,259.2002 ± 12,342,820,772,949.64648 | 7,634.20695 ± 750.53481 |
| FeatureWrap | 0.90022 ± 0.01044 | 0.85828 ± 0.00255 | 0.85222 ± 0.00345 | 0.84230 ± 0.00557 | 0.83890 ± 0.00589 | 0.85222 ± 0.00345 | 0.95344 ± 0.00089 | 0.38222 ± 0.00544 | 0.69375 ± 0.00994 | 2,881,203 ± 0.00000 | 661,479,649,996.80005 ± 1,253,726,830,906.76416 | 2,375.2474 ± 866.19194 |
| BIE | 0.89989 ± 0.00965 | 0.86069 ± 0.00232 | 0.85295 ± 0.00430 | 0.84680 ± 0.00407 | 0.84559 ± 0.00428 | 0.85295 ± 0.00430 | 0.95687 ± 0.00223 | 0.37188 ± 0.00807 | 0.70102 ± 0.00779 | 1,730,419 ± 0.00000 | 170,941,288,227.20001 ± 374,187,299,306.86566 | 4,251.9051 ± 227.82844 |
Covtype
Source: UCI Covertype / OpenML
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| ViT+MLP | REFINED | 0.97050 ± 0.00000 | 0.97051 ± 0.00000 | 4491.06401 ± 0.00000 | — | — |
| CNN | Combination | 0.96485 ± 0.00000 | 0.96487 ± 0.00000 | 4482.55339 ± 0.00000 | — | — |
| MLP | MLP | 0.96310 ± 0.00000 | 0.96312 ± 0.00000 | 2870.39325 ± 0.00000 | — | — |
| CNN+MLP | REFINED | 0.96289 ± 0.00000 | 0.96284 ± 0.00000 | 1832.13226 ± 0.00000 | — | — |
| ViT | DistanceMatrix | 0.96078 ± 0.00000 | 0.96075 ± 0.00000 | 7455.48702 ± 0.00000 | — | — |
Architecture Results
MLP
| Method | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|
| MLP | 0.96310 ± 0.00000 | 0.96312 ± 0.00000 | 2870.39325 ± 0.00000 | — | — |
ViT
| Method | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|
| TINTO | 0.95210 ± 0.00000 | 0.95211 ± 0.00000 | 3717.71217 ± 0.00000 | — | — |
| IGTD | 0.93557 ± 0.00000 | 0.93560 ± 0.00000 | 4028.44666 ± 0.00000 | — | — |
| REFINED | 0.94441 ± 0.00000 | 0.94441 ± 0.00000 | 3636.44167 ± 0.00000 | — | — |
| BarGraph | 0.95900 ± 0.00000 | 0.95899 ± 0.00000 | 3740.85926 ± 0.00000 | — | — |
| FeatureWrap | 0.94988 ± 0.00000 | 0.94983 ± 0.00000 | 3783.60048 ± 0.00000 | — | — |
| Combination | 0.94756 ± 0.00000 | 0.94756 ± 0.00000 | 3769.21102 ± 0.00000 | — | — |
| DistanceMatrix | 0.96078 ± 0.00000 | 0.96075 ± 0.00000 | 7455.48702 ± 0.00000 | — | — |
ViT + MLP
| Method | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|
| TINTO | 0.95972 ± 0.00000 | 0.95972 ± 0.00000 | 4179.14185 ± 0.00000 | — | — |
| IGTD | 0.96671 ± 0.00000 | 0.96671 ± 0.00000 | 4298.49003 ± 0.00000 | — | — |
| REFINED | 0.97050 ± 0.00000 | 0.97051 ± 0.00000 | 4491.06401 ± 0.00000 | — | — |
| BarGraph | 0.95683 ± 0.00000 | 0.95682 ± 0.00000 | 4305.19298 ± 0.00000 | — | — |
| FeatureWrap | 0.95517 ± 0.00000 | 0.95518 ± 0.00000 | 4388.84096 ± 0.00000 | — | — |
| Combination | 0.95903 ± 0.00000 | 0.95903 ± 0.00000 | 4331.18001 ± 0.00000 | — | — |
| DistanceMatrix | 0.96499 ± 0.00000 | 0.96499 ± 0.00000 | 4372.84549 ± 0.00000 | — | — |
CNN
| Method | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|
| TINTO | 0.95707 ± 0.00000 | 0.95707 ± 0.00000 | 4064.05686 ± 0.00000 | — | — |
| IGTD | 0.95949 ± 0.00000 | 0.95949 ± 0.00000 | 4029.40301 ± 0.00000 | — | — |
| REFINED | 0.96206 ± 0.00000 | 0.96207 ± 0.00000 | 4004.55836 ± 0.00000 | — | — |
| BarGraph | 0.96467 ± 0.00000 | 0.96467 ± 0.00000 | 3929.04679 ± 0.00000 | — | — |
| FeatureWrap | 0.94784 ± 0.00000 | 0.94780 ± 0.00000 | 3922.66296 ± 0.00000 | — | — |
| Combination | 0.96485 ± 0.00000 | 0.96487 ± 0.00000 | 4482.55339 ± 0.00000 | — | — |
| DistanceMatrix | 0.95455 ± 0.00000 | 0.95455 ± 0.00000 | 4027.21556 ± 0.00000 | — | — |
| BIE | 0.95304 ± 0.00000 | 0.95301 ± 0.00000 | 3952.53097 ± 0.00000 | — | — |
CNN + MLP
| Method | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|
| TINTO | 0.95034 ± 0.00000 | 0.95032 ± 0.00000 | 1772.66925 ± 0.00000 | — | — |
| IGTD | 0.94519 ± 0.00000 | 0.94519 ± 0.00000 | 1722.16181 ± 0.00000 | — | — |
| REFINED | 0.96289 ± 0.00000 | 0.96284 ± 0.00000 | 1832.13226 ± 0.00000 | — | — |
| BarGraph | 0.93826 ± 0.00000 | 0.93826 ± 0.00000 | 1745.82248 ± 0.00000 | — | — |
| FeatureWrap | 0.94837 ± 0.00000 | 0.94836 ± 0.00000 | 1655.45252 ± 0.00000 | — | — |
| Combination | 0.94017 ± 0.00000 | 0.94018 ± 0.00000 | 1712.62713 ± 0.00000 | — | — |
| DistanceMatrix | 0.96089 ± 0.00000 | 0.96089 ± 0.00000 | 1734.12690 ± 0.00000 | — | — |
| BIE | 0.90212 ± 0.00000 | 0.90207 ± 0.00000 | 1684.29330 ± 0.00000 | — | — |
Dna
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | LightGBM | 0.96904 ± 0.00229 | 0.96586 ± 0.00223 | 0.83394 ± 0.08025 | — | — |
| MLP | MLP | 0.95900 ± 0.00919 | 0.95908 ± 0.00924 | 17.34056 ± 0.04865 | 125,699 ± 0.00000 | 251,008 ± 0.00000 |
| ViT | IGTD | 0.96276 ± 0.00716 | 0.96270 ± 0.00716 | 288.60882 ± 6.51746 | 20,028,443 ± 0.00000 | 3,916,903,412 ± 0.00000 |
| ViT+MLP | IGTD | 0.96569 ± 0.00482 | 0.96579 ± 0.00484 | 296.84681 ± 1.41752 | 19,147,355 ± 0.00000 | 73,330,566,120 ± 6,441,433,640.24378 |
| CNN | REFINED | 0.94686 ± 0.01423 | 0.94686 ± 0.01444 | 79.57766 ± 4.85588 | 1,364,507 ± 0.00000 | 155,817,264 ± 0.00000 |
| CNN+MLP | FeatureWrap | 0.94812 ± 0.00581 | 0.94823 ± 0.00591 | 51.14995 ± 2.83025 | 2,817,195 ± 0.00000 | 403,004,000 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.99955 ± 0.00000 | 0.97155 ± 0.00238 | 0.96653 ± 0.00148 | 0.96349 ± 0.00178 | 0.95981 ± 0.00158 | 0.96761 ± 0.00205 | 4.20438 ± 0.08675 | — | — |
| LightGBM | 0.99910 ± 0.00000 | 0.97280 ± 0.00209 | 0.96904 ± 0.00229 | 0.96586 ± 0.00223 | 0.96290 ± 0.00285 | 0.96923 ± 0.00147 | 0.83394 ± 0.08025 | — | — |
| XGBoost | 0.99955 ± 0.00000 | 0.96946 ± 0.00350 | 0.96778 ± 0.00317 | 0.96469 ± 0.00376 | 0.96042 ± 0.00381 | 0.96966 ± 0.00389 | 2.38268 ± 0.05833 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.98655 ± 0.00678 | 0.96234 ± 0.00936 | 0.95900 ± 0.00919 | 0.95908 ± 0.00924 | 0.95966 ± 0.00902 | 0.95900 ± 0.00919 | 0.99520 ± 0.00088 | 0.12762 ± 0.01930 | 0.93382 ± 0.01495 | 125,699 ± 0.00000 | 251,008 ± 0.00000 | 17.34056 ± 0.04865 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.94386 ± 0.01146 | 0.92008 ± 0.00880 | 0.91716 ± 0.00688 | 0.91752 ± 0.00719 | 0.91880 ± 0.00762 | 0.91716 ± 0.00688 | 0.98487 ± 0.00164 | 0.22577 ± 0.01743 | 0.86639 ± 0.01171 | 6,476,985 ± 0.00000 | 217,466,360 ± 0.00000 | 87.84516 ± 0.66980 |
| IGTD | 0.98834 ± 0.00603 | 0.96402 ± 0.00760 | 0.96276 ± 0.00716 | 0.96270 ± 0.00716 | 0.96286 ± 0.00708 | 0.96276 ± 0.00716 | 0.99547 ± 0.00114 | 0.13422 ± 0.02999 | 0.93947 ± 0.01162 | 20,028,443 ± 0.00000 | 3,916,903,412 ± 0.00000 | 288.60882 ± 6.51746 |
| REFINED | 0.98395 ± 0.00394 | 0.96695 ± 0.00477 | 0.95481 ± 0.00545 | 0.95494 ± 0.00543 | 0.95543 ± 0.00526 | 0.95481 ± 0.00545 | 0.99211 ± 0.00159 | 0.14318 ± 0.01237 | 0.92712 ± 0.00863 | 7,690,243 ± 0.00000 | 403,679,040 ± 0.00000 | 201.60364 ± 25.39346 |
| FeatureWrap | 0.97300 ± 0.00985 | 0.95481 ± 0.00845 | 0.95607 ± 0.00769 | 0.95602 ± 0.00779 | 0.95627 ± 0.00769 | 0.95607 ± 0.00769 | 0.99324 ± 0.00119 | 0.14132 ± 0.01830 | 0.92891 ± 0.01242 | 3,159,771 ± 0.00000 | 1,057,233,840 ± 0.00000 | 121.53474 ± 1.87864 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.98475 ± 0.01014 | 0.96736 ± 0.00482 | 0.95941 ± 0.00317 | 0.95947 ± 0.00319 | 0.95972 ± 0.00328 | 0.95941 ± 0.00317 | 0.99300 ± 0.00060 | 0.13922 ± 0.00394 | 0.93437 ± 0.00525 | 6,584,217 ± 0.00000 | 2,153,332,160 ± 425,589,636.53063 | 118.35021 ± 1.94925 |
| IGTD | 0.99004 ± 0.00588 | 0.96611 ± 0.00273 | 0.96569 ± 0.00482 | 0.96579 ± 0.00484 | 0.96613 ± 0.00494 | 0.96569 ± 0.00482 | 0.99354 ± 0.00115 | 0.14215 ± 0.02601 | 0.94442 ± 0.00788 | 19,147,355 ± 0.00000 | 73,330,566,120 ± 6,441,433,640.24378 | 296.84681 ± 1.41752 |
| REFINED | 0.98170 ± 0.00484 | 0.96234 ± 0.00512 | 0.95481 ± 0.00281 | 0.95489 ± 0.00282 | 0.95544 ± 0.00277 | 0.95481 ± 0.00281 | 0.99164 ± 0.00130 | 0.16187 ± 0.01319 | 0.92705 ± 0.00455 | 7,810,659 ± 0.00000 | 3,738,010,240 ± 738,789,142.21454 | 222.49335 ± 4.77872 |
| FeatureWrap | 0.98735 ± 0.00753 | 0.96444 ± 0.00331 | 0.96276 ± 0.00541 | 0.96284 ± 0.00540 | 0.96315 ± 0.00529 | 0.96276 ± 0.00541 | 0.99460 ± 0.00078 | 0.12526 ± 0.01582 | 0.93986 ± 0.00862 | 3,255,611 ± 0.00000 | 19,644,640,128 ± 1,725,605,739.41171 | 136.39478 ± 4.12009 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.98924 ± 0.00609 | 0.92929 ± 0.00855 | 0.91590 ± 0.00541 | 0.91597 ± 0.00567 | 0.91649 ± 0.00601 | 0.91590 ± 0.00541 | 0.98324 ± 0.00229 | 0.24036 ± 0.00774 | 0.86376 ± 0.00940 | 5,670,235 ± 0.00000 | 532,993,344 ± 0.00000 | 69.24992 ± 2.75125 |
| IGTD | 0.99534 ± 0.00345 | 0.94561 ± 0.00709 | 0.93264 ± 0.00829 | 0.93242 ± 0.00847 | 0.93302 ± 0.00852 | 0.93264 ± 0.00829 | 0.98925 ± 0.00470 | 0.23842 ± 0.06370 | 0.89060 ± 0.01387 | 3,382,019 ± 0.00000 | 312,868,128 ± 0.00000 | 52.91997 ± 1.50567 |
| REFINED | 0.99552 ± 0.00597 | 0.94979 ± 0.01097 | 0.94686 ± 0.01423 | 0.94686 ± 0.01444 | 0.94714 ± 0.01436 | 0.94686 ± 0.01423 | 0.99071 ± 0.00272 | 0.20894 ± 0.01598 | 0.91375 ± 0.02348 | 1,364,507 ± 0.00000 | 155,817,264 ± 0.00000 | 79.57766 ± 4.85588 |
| FeatureWrap | 0.98413 ± 0.02596 | 0.94519 ± 0.02964 | 0.93347 ± 0.02908 | 0.93390 ± 0.02835 | 0.93578 ± 0.02526 | 0.93347 ± 0.02908 | 0.98649 ± 0.00910 | 0.26083 ± 0.05225 | 0.89384 ± 0.04392 | 2,676,523 ± 0.00000 | 402,723,072 ± 0.00000 | 41.64876 ± 0.55029 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.98206 ± 0.00827 | 0.95816 ± 0.00491 | 0.94603 ± 0.01121 | 0.94591 ± 0.01130 | 0.94680 ± 0.01035 | 0.94603 ± 0.01121 | 0.99321 ± 0.00149 | 0.16841 ± 0.02508 | 0.91261 ± 0.01786 | 5,569,563 ± 0.00000 | 532,792,224 ± 0.00000 | 72.98984 ± 1.24142 |
| IGTD | 0.99937 ± 0.00040 | 0.95398 ± 0.00754 | 0.94812 ± 0.00229 | 0.94815 ± 0.00223 | 0.94840 ± 0.00199 | 0.94812 ± 0.00229 | 0.99275 ± 0.00147 | 0.18653 ± 0.01943 | 0.91590 ± 0.00341 | 3,507,715 ± 0.00000 | 313,119,136 ± 0.00000 | 58.24372 ± 1.41547 |
| REFINED | 0.99713 ± 0.00108 | 0.95105 ± 0.01031 | 0.93807 ± 0.00832 | 0.93811 ± 0.00845 | 0.93929 ± 0.00898 | 0.93807 ± 0.00832 | 0.98941 ± 0.00117 | 0.21958 ± 0.02508 | 0.90001 ± 0.01415 | 1,490,203 ± 0.00000 | 156,068,272 ± 0.00000 | 75.13162 ± 3.41050 |
| FeatureWrap | 0.99596 ± 0.00394 | 0.94895 ± 0.00671 | 0.94812 ± 0.00581 | 0.94823 ± 0.00591 | 0.94874 ± 0.00614 | 0.94812 ± 0.00581 | 0.99045 ± 0.00118 | 0.22568 ± 0.03002 | 0.91610 ± 0.00977 | 2,817,195 ± 0.00000 | 403,004,000 ± 0.00000 | 51.14995 ± 2.83025 |
Gas
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | CatBoost | 0.99482 ± 0.00021 | 0.99480 ± 0.00026 | 36.80809 ± 0.25908 | — | — |
| MLP | MLP | 0.99023 ± 0.00055 | 0.99023 ± 0.00055 | 46.54599 ± 0.11946 | 198,918 ± 0.00000 | 397,056 ± 0.00000 |
| ViT | REFINED | 0.99425 ± 0.00176 | 0.99425 ± 0.00176 | 138.15323 ± 3.43411 | 3,467,982 ± 0.00000 | 252,901,890 ± 0.00000 |
| ViT+MLP | DistanceMatrix | 0.99291 ± 0.00109 | 0.99291 ± 0.00110 | 552.69914 ± 30.75840 | 11,757,862 ± 0.00000 | 3,821,865,312 ± 755,362,456.01938 |
| CNN | REFINED | 0.99559 ± 0.00092 | 0.99559 ± 0.00092 | 106.43015 ± 0.47909 | 263,238 ± 0.00000 | 8,991,024 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 1.00000 ± 0.00000 | 0.99703 ± 0.00021 | 0.99482 ± 0.00021 | 0.99480 ± 0.00026 | 0.99544 ± 0.00025 | 0.99419 ± 0.00027 | 36.80809 ± 0.25908 | — | — |
| LightGBM | 1.00000 ± 0.00000 | 0.99684 ± 0.00026 | 0.99339 ± 0.00079 | 0.99345 ± 0.00076 | 0.99405 ± 0.00082 | 0.99287 ± 0.00071 | 4.49590 ± 0.15569 | — | — |
| XGBoost | 1.00000 ± 0.00000 | 0.99664 ± 0.00000 | 0.99435 ± 0.00021 | 0.99444 ± 0.00022 | 0.99501 ± 0.00023 | 0.99388 ± 0.00025 | 5.76104 ± 0.04317 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.99649 ± 0.00086 | 0.99492 ± 0.00064 | 0.99023 ± 0.00055 | 0.99023 ± 0.00055 | 0.99027 ± 0.00056 | 0.99023 ± 0.00055 | 0.99748 ± 0.00034 | 0.06793 ± 0.00848 | 0.98815 ± 0.00066 | 198,918 ± 0.00000 | 397,056 ± 0.00000 | 46.54599 ± 0.11946 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.99741 ± 0.00118 | 0.99434 ± 0.00133 | 0.99061 ± 0.00199 | 0.99061 ± 0.00199 | 0.99065 ± 0.00200 | 0.99061 ± 0.00199 | 0.99956 ± 0.00014 | 0.04212 ± 0.00671 | 0.98861 ± 0.00242 | 5,737,950 ± 0.00000 | 54,820,530 ± 0.00000 | 182.82055 ± 41.48864 |
| IGTD | 0.99914 ± 0.00072 | 0.99616 ± 0.00034 | 0.65424 ± 0.01442 | 0.64211 ± 0.01677 | 0.68921 ± 0.02778 | 0.65424 ± 0.01442 | 0.91613 ± 0.01030 | 1.82867 ± 0.25459 | 0.59116 ± 0.02123 | 11,447,886 ± 0.00000 | 862,030,152 ± 0.00000 | 363.89538 ± 0.51325 |
| REFINED | 0.99756 ± 0.00119 | 0.99722 ± 0.00086 | 0.99425 ± 0.00176 | 0.99425 ± 0.00176 | 0.99426 ± 0.00176 | 0.99425 ± 0.00176 | 0.99983 ± 0.00010 | 0.02459 ± 0.00371 | 0.99303 ± 0.00214 | 3,467,982 ± 0.00000 | 252,901,890 ± 0.00000 | 138.15323 ± 3.43411 |
| DistanceMatrix | 0.99813 ± 0.00083 | 0.99722 ± 0.00092 | 0.99252 ± 0.00129 | 0.99252 ± 0.00130 | 0.99255 ± 0.00130 | 0.99252 ± 0.00129 | 0.99980 ± 0.00008 | 0.03687 ± 0.00308 | 0.99094 ± 0.00157 | 11,474,022 ± 0.00000 | 391,095,820 ± 0.00000 | 421.74331 ± 10.55267 |
| BarGraph | 0.99852 ± 0.00025 | 0.99616 ± 0.00034 | 0.99224 ± 0.00137 | 0.99224 ± 0.00137 | 0.99228 ± 0.00138 | 0.99224 ± 0.00137 | 0.99951 ± 0.00017 | 0.03886 ± 0.00613 | 0.99059 ± 0.00167 | 1,735,910 ± 0.00000 | 59,010,255 ± 0.00000 | 195.19845 ± 4.07837 |
| Combination | 0.99834 ± 0.00065 | 0.99626 ± 0.00040 | 0.99272 ± 0.00052 | 0.99272 ± 0.00052 | 0.99276 ± 0.00052 | 0.99272 ± 0.00052 | 0.99953 ± 0.00027 | 0.03742 ± 0.00465 | 0.99117 ± 0.00064 | 14,435,142 ± 0.00000 | 482,492,376 ± 0.00000 | 462.68637 ± 10.41090 |
| SuperTML | 0.99943 ± 0.00112 | 0.99214 ± 0.00110 | 0.98562 ± 0.00232 | 0.98564 ± 0.00232 | 0.98572 ± 0.00232 | 0.98562 ± 0.00232 | 0.99860 ± 0.00046 | 0.09438 ± 0.00864 | 0.98257 ± 0.00282 | 21,510,150 ± 0.00000 | 9,067,504,704 ± 0.00000 | 2,897.46299 ± 27.53749 |
| FeatureWrap | 0.81035 ± 0.07579 | 0.59712 ± 0.05523 | 0.59655 ± 0.06369 | 0.58378 ± 0.07979 | 0.63992 ± 0.09459 | 0.59655 ± 0.06369 | 0.87598 ± 0.03935 | 1.24476 ± 0.19879 | 0.52546 ± 0.08155 | 3,983,148 ± 0.00000 | 39,824,176 ± 0.00000 | 327.32415 ± 2.58176 |
| BIE | 0.99998 ± 0.00005 | 0.99453 ± 0.00055 | 0.98630 ± 0.00218 | 0.98629 ± 0.00219 | 0.98634 ± 0.00219 | 0.98630 ± 0.00218 | 0.99859 ± 0.00018 | 0.08844 ± 0.01330 | 0.98338 ± 0.00265 | 34,724,502 ± 0.00000 | 4,566,851,280 ± 0.00000 | 1,448.67827 ± 2.37018 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.99714 ± 0.00136 | 0.99482 ± 0.00171 | 0.99090 ± 0.00096 | 0.99090 ± 0.00096 | 0.99093 ± 0.00096 | 0.99090 ± 0.00096 | 0.99929 ± 0.00023 | 0.04582 ± 0.00691 | 0.98896 ± 0.00116 | 5,870,302 ± 0.00000 | 779,343,120 ± 154,031,208.62387 | 180.41575 ± 7.10909 |
| IGTD | 0.99869 ± 0.00057 | 0.99597 ± 0.00087 | 0.70321 ± 0.00904 | 0.69452 ± 0.01129 | 0.71298 ± 0.01420 | 0.70321 ± 0.00904 | 0.93515 ± 0.00801 | 1.53880 ± 0.19012 | 0.64465 ± 0.00909 | 11,555,966 ± 0.00000 | 7,666,723,008 ± 1,515,269,180.93108 | 430.32818 ± 3.91669 |
| REFINED | 0.99708 ± 0.00118 | 0.99645 ± 0.00105 | 0.99281 ± 0.00131 | 0.99281 ± 0.00131 | 0.99284 ± 0.00131 | 0.99281 ± 0.00131 | 0.99982 ± 0.00010 | 0.03157 ± 0.00640 | 0.99128 ± 0.00159 | 3,822,910 ± 0.00000 | 5,059,519,524 ± 444,433,487.83141 | 192.69938 ± 12.95578 |
| DistanceMatrix | 0.99803 ± 0.00059 | 0.99741 ± 0.00055 | 0.99291 ± 0.00109 | 0.99291 ± 0.00110 | 0.99293 ± 0.00109 | 0.99291 ± 0.00109 | 0.99928 ± 0.00026 | 0.04195 ± 0.00326 | 0.99140 ± 0.00133 | 11,757,862 ± 0.00000 | 3,821,865,312 ± 755,362,456.01938 | 552.69914 ± 30.75840 |
| BarGraph | 0.99817 ± 0.00046 | 0.99626 ± 0.00098 | 0.99128 ± 0.00114 | 0.99128 ± 0.00114 | 0.99133 ± 0.00114 | 0.99128 ± 0.00114 | 0.99919 ± 0.00044 | 0.04655 ± 0.01206 | 0.98943 ± 0.00139 | 1,961,926 ± 0.00000 | 558,790,072 ± 110,440,585.08809 | 240.12472 ± 12.82240 |
| Combination | 0.99764 ± 0.00051 | 0.99664 ± 0.00034 | 0.99281 ± 0.00096 | 0.99281 ± 0.00096 | 0.99285 ± 0.00097 | 0.99281 ± 0.00096 | 0.99971 ± 0.00014 | 0.03550 ± 0.00279 | 0.99129 ± 0.00117 | 14,742,406 ± 0.00000 | 4,699,479,744 ± 928,816,238.05406 | 572.58901 ± 23.88611 |
| SuperTML | 0.99688 ± 0.00027 | 0.99482 ± 0.00063 | 0.99080 ± 0.00052 | 0.99080 ± 0.00053 | 0.99084 ± 0.00053 | 0.99080 ± 0.00052 | 0.99759 ± 0.00010 | 0.06655 ± 0.00271 | 0.98884 ± 0.00064 | 21,711,110 ± 0.00000 | 74,096,585,216 ± 14,644,623,507.70746 | 2,891.24381 ± 57.72719 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.99873 ± 0.00104 | 0.99607 ± 0.00092 | 0.99214 ± 0.00115 | 0.99214 ± 0.00115 | 0.99216 ± 0.00114 | 0.99214 ± 0.00115 | 0.99992 ± 0.00003 | 0.02851 ± 0.00273 | 0.99047 ± 0.00140 | 1,619,470 ± 0.00000 | 171,610,944 ± 0.00000 | 136.59140 ± 2.88332 |
| IGTD | 0.99788 ± 0.00101 | 0.98888 ± 0.00380 | 0.17010 ± 0.04243 | 0.05139 ± 0.02348 | 0.06725 ± 0.07757 | 0.17010 ± 0.04243 | 0.57662 ± 0.04208 | 3.08575 ± 1.31520 | 0.00262 ± 0.00768 | 3,636,422 ± 0.00000 | 150,166,224 ± 0.00000 | 122.98220 ± 1.10191 |
| REFINED | 0.99940 ± 0.00034 | 0.99731 ± 0.00026 | 0.99559 ± 0.00092 | 0.99559 ± 0.00092 | 0.99560 ± 0.00092 | 0.99559 ± 0.00092 | 0.99999 ± 0.00001 | 0.01392 ± 0.00281 | 0.99465 ± 0.00112 | 263,238 ± 0.00000 | 8,991,024 ± 0.00000 | 106.43015 ± 0.47909 |
| DistanceMatrix | 0.99912 ± 0.00030 | 0.99712 ± 0.00059 | 0.99444 ± 0.00093 | 0.99444 ± 0.00093 | 0.99447 ± 0.00093 | 0.99444 ± 0.00093 | 0.99981 ± 0.00019 | 0.02764 ± 0.00898 | 0.99326 ± 0.00113 | 288,438 ± 0.00000 | 36,890,464 ± 0.00000 | 225.64282 ± 6.66273 |
| BarGraph | 0.99908 ± 0.00057 | 0.99626 ± 0.00141 | 0.99224 ± 0.00164 | 0.99224 ± 0.00164 | 0.99227 ± 0.00163 | 0.99224 ± 0.00164 | 0.99941 ± 0.00021 | 0.04300 ± 0.00658 | 0.99059 ± 0.00199 | 203,198 ± 0.00000 | 109,102,288 ± 0.00000 | 206.07859 ± 2.82049 |
| Combination | 0.99895 ± 0.00071 | 0.99703 ± 0.00052 | 0.99377 ± 0.00203 | 0.99377 ± 0.00203 | 0.99381 ± 0.00201 | 0.99377 ± 0.00203 | 0.99979 ± 0.00012 | 0.02849 ± 0.00648 | 0.99245 ± 0.00246 | 135,822 ± 0.00000 | 101,826,752 ± 0.00000 | 202.90694 ± 4.58884 |
| SuperTML | 0.99867 ± 0.00145 | 0.99444 ± 0.00110 | 0.98860 ± 0.00210 | 0.98860 ± 0.00210 | 0.98869 ± 0.00208 | 0.98860 ± 0.00210 | 0.99915 ± 0.00014 | 0.06455 ± 0.01081 | 0.98618 ± 0.00254 | 1,360,406 ± 0.00000 | 505,178,176 ± 0.00000 | 526.23909 ± 24.16208 |
| FeatureWrap | 0.86423 ± 0.06309 | 0.53960 ± 0.04474 | 0.62741 ± 0.03281 | 0.63051 ± 0.02636 | 0.71772 ± 0.03312 | 0.62741 ± 0.03281 | 0.89263 ± 0.01529 | 1.20806 ± 0.18070 | 0.57339 ± 0.03365 | 2,443,174 ± 0.00000 | 135,307,296 ± 0.00000 | 161.80681 ± 3.03091 |
Isolet
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|
| Trees | XGBoost | 0.96222 ± 0.00316 | 0.96221 ± 0.00314 | 168.39582 ± 4.28198 | — | — |
| MLP | MLP | 0.95829 ± 0.00412 | 0.95833 ± 0.00407 | 26.72631 ± 0.56690 | 454,426 ± 0.00000 | 908,032 ± 0.00000 |
| ViT | REFINED | 0.96376 ± 0.00268 | 0.96371 ± 0.00267 | 279.52203 ± 34.80752 | 10,017,680 ± 0.00000 | 529,073,367 ± 0.00000 |
| ViT+MLP | REFINED | 0.96051 ± 0.00706 | 0.96053 ± 0.00700 | 302.87938 ± 8.28478 | 10,532,176 ± 0.00000 | 4,902,711,480 ± 968,983,436.71594 |
| CNN | IGTD | 0.95897 ± 0.00423 | 0.95912 ± 0.00421 | 227.41112 ± 0.34707 | 11,012,890 ± 0.00000 | 824,791,872 ± 0.00000 |
| CNN+MLP | IGTD | 0.96188 ± 0.00536 | 0.96185 ± 0.00537 | 237.21687 ± 0.68981 | 11,507,930 ± 0.00000 | 825,781,120 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|
| XGBoost | 1.00000 ± 0.00000 | 0.96752 ± 0.00283 | 0.96222 ± 0.00316 | 0.96221 ± 0.00314 | 0.96323 ± 0.00310 | 0.96222 ± 0.00316 | 168.39582 ± 4.28198 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.99399 ± 0.00389 | 0.95915 ± 0.00525 | 0.95829 ± 0.00412 | 0.95833 ± 0.00407 | 0.95976 ± 0.00380 | 0.95829 ± 0.00412 | 0.99924 ± 0.00012 | 0.15922 ± 0.00899 | 0.95668 ± 0.00427 | 454,426 ± 0.00000 | 908,032 ± 0.00000 | 26.72631 ± 0.56690 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.98142 ± 0.00843 | 0.92325 ± 0.00615 | 0.92684 ± 0.00732 | 0.92656 ± 0.00751 | 0.92888 ± 0.00680 | 0.92684 ± 0.00732 | 0.99872 ± 0.00009 | 0.23731 ± 0.01226 | 0.92402 ± 0.00757 | 1,802,354 ± 0.00000 | 18,282,472 ± 0.00000 | 216.46732 ± 29.10459 |
| IGTD | 0.99436 ± 0.01086 | 0.95983 ± 0.01320 | 0.94479 ± 0.01697 | 0.94449 ± 0.01731 | 0.94693 ± 0.01466 | 0.94479 ± 0.01697 | 0.99914 ± 0.00035 | 0.23000 ± 0.03803 | 0.94269 ± 0.01753 | 9,077,296 ± 0.00000 | 456,306,955 ± 0.00000 | 243.64260 ± 26.39967 |
| REFINED | 0.99993 ± 0.00016 | 0.96615 ± 0.00470 | 0.96376 ± 0.00268 | 0.96371 ± 0.00267 | 0.96497 ± 0.00247 | 0.96376 ± 0.00268 | 0.99923 ± 0.00023 | 0.15980 ± 0.01716 | 0.96236 ± 0.00278 | 10,017,680 ± 0.00000 | 529,073,367 ± 0.00000 | 279.52203 ± 34.80752 |
| SuperTML | 1.00000 ± 0.00000 | 0.85795 ± 0.01258 | 0.84427 ± 0.01152 | 0.84332 ± 0.01124 | 0.84561 ± 0.01052 | 0.84427 ± 0.01152 | 0.99221 ± 0.00109 | 0.50840 ± 0.03374 | 0.83818 ± 0.01196 | 10,036,794 ± 0.00000 | 83,538,992 ± 0.00000 | 262.63460 ± 2.58628 |
| FeatureWrap | 0.99780 ± 0.00206 | 0.91846 ± 0.00511 | 0.90821 ± 0.01090 | 0.90736 ± 0.01170 | 0.90953 ± 0.01088 | 0.90821 ± 0.01090 | 0.99672 ± 0.00049 | 0.31558 ± 0.01919 | 0.90465 ± 0.01128 | 14,200,242 ± 0.00000 | 142,015,880 ± 0.00000 | 351.11808 ± 15.76725 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.98889 ± 0.00369 | 0.94974 ± 0.00746 | 0.94479 ± 0.00609 | 0.94468 ± 0.00606 | 0.94574 ± 0.00563 | 0.94479 ± 0.00609 | 0.99864 ± 0.00042 | 0.21929 ± 0.03245 | 0.94263 ± 0.00632 | 2,303,090 ± 0.00000 | 272,973,120 ± 53,951,049.95015 | 278.14390 ± 7.19155 |
| IGTD | 0.99645 ± 0.00229 | 0.95607 ± 0.00215 | 0.94359 ± 0.00218 | 0.94356 ± 0.00198 | 0.94632 ± 0.00289 | 0.94359 ± 0.00218 | 0.99915 ± 0.00014 | 0.20866 ± 0.02095 | 0.94145 ± 0.00230 | 9,540,848 ± 0.00000 | 9,491,839,110 ± 833,773,076.98515 | 279.28474 ± 16.77670 |
| REFINED | 0.99802 ± 0.00226 | 0.96051 ± 0.00571 | 0.96051 ± 0.00706 | 0.96053 ± 0.00700 | 0.96178 ± 0.00674 | 0.96051 ± 0.00706 | 0.99942 ± 0.00002 | 0.16082 ± 0.01207 | 0.95898 ± 0.00733 | 10,532,176 ± 0.00000 | 4,902,711,480 ± 968,983,436.71594 | 302.87938 ± 8.28478 |
| SuperTML | 0.98384 ± 0.01251 | 0.94838 ± 0.01263 | 0.94376 ± 0.02125 | 0.94367 ± 0.02136 | 0.94594 ± 0.01920 | 0.94376 ± 0.02125 | 0.99904 ± 0.00038 | 0.19208 ± 0.04362 | 0.94161 ± 0.02200 | 10,609,402 ± 0.00000 | 1,743,066,720 ± 153,112,804.13442 | 289.08523 ± 3.50653 |
| FeatureWrap | 0.98252 ± 0.00567 | 0.94701 ± 0.00973 | 0.94701 ± 0.00880 | 0.94707 ± 0.00874 | 0.94868 ± 0.00794 | 0.94701 ± 0.00880 | 0.99886 ± 0.00033 | 0.19788 ± 0.02461 | 0.94495 ± 0.00912 | 14,660,242 ± 0.00000 | 2,048,710,208 ± 404,911,907.68233 | 372.53602 ± 17.60092 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.99978 ± 0.00049 | 0.93231 ± 0.00140 | 0.93504 ± 0.00831 | 0.93506 ± 0.00835 | 0.93696 ± 0.00798 | 0.93504 ± 0.00831 | 0.99878 ± 0.00026 | 0.20936 ± 0.01879 | 0.93252 ± 0.00863 | 1,552,738 ± 0.00000 | 64,476,192 ± 0.00000 | 91.40022 ± 4.36537 |
| IGTD | 1.00000 ± 0.00000 | 0.94051 ± 0.00532 | 0.95897 ± 0.00423 | 0.95912 ± 0.00421 | 0.96171 ± 0.00367 | 0.95897 ± 0.00423 | 0.99937 ± 0.00016 | 0.14785 ± 0.00747 | 0.95744 ± 0.00437 | 11,012,890 ± 0.00000 | 824,791,872 ± 0.00000 | 227.41112 ± 0.34707 |
| REFINED | 0.99985 ± 0.00033 | 0.96000 ± 0.00429 | 0.95590 ± 0.00522 | 0.95576 ± 0.00525 | 0.95741 ± 0.00471 | 0.95590 ± 0.00522 | 0.99921 ± 0.00013 | 0.16478 ± 0.01589 | 0.95420 ± 0.00541 | 9,491,778 ± 0.00000 | 1,668,365,064 ± 0.00000 | 271.27100 ± 1.03411 |
| FeatureWrap | 1.00000 ± 0.00000 | 0.93966 ± 0.00644 | 0.94188 ± 0.00234 | 0.94182 ± 0.00234 | 0.94313 ± 0.00201 | 0.94188 ± 0.00234 | 0.99876 ± 0.00019 | 0.24086 ± 0.01758 | 0.93961 ± 0.00242 | 6,179,626 ± 0.00000 | 1,341,694,848 ± 0.00000 | 222.70396 ± 0.22781 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.99993 ± 0.00016 | 0.93368 ± 0.00455 | 0.94342 ± 0.00830 | 0.94358 ± 0.00827 | 0.94552 ± 0.00767 | 0.94342 ± 0.00830 | 0.99906 ± 0.00016 | 0.17505 ± 0.01858 | 0.94123 ± 0.00860 | 2,007,138 ± 0.00000 | 719,226,464 ± 0.00000 | 120.77254 ± 3.81571 |
| IGTD | 1.00000 ± 0.00000 | 0.94820 ± 0.00754 | 0.96188 ± 0.00536 | 0.96185 ± 0.00537 | 0.96361 ± 0.00474 | 0.96188 ± 0.00536 | 0.99952 ± 0.00012 | 0.13588 ± 0.01922 | 0.96043 ± 0.00555 | 11,507,930 ± 0.00000 | 825,781,120 ± 0.00000 | 237.21687 ± 0.68981 |
| REFINED | 0.99982 ± 0.00032 | 0.95470 ± 0.00347 | 0.94735 ± 0.01016 | 0.94738 ± 0.01003 | 0.94914 ± 0.00890 | 0.94735 ± 0.01016 | 0.99862 ± 0.00057 | 0.22555 ± 0.04630 | 0.94532 ± 0.01052 | 10,021,506 ± 0.00000 | 1,669,423,560 ± 0.00000 | 285.32846 ± 1.41554 |
| FeatureWrap | 0.99985 ± 0.00020 | 0.93402 ± 0.00711 | 0.93060 ± 0.01016 | 0.93051 ± 0.01012 | 0.93246 ± 0.00938 | 0.93060 ± 0.01016 | 0.99841 ± 0.00035 | 0.30922 ± 0.04104 | 0.92791 ± 0.01053 | 6,660,074 ± 0.00000 | 1,342,654,912 ± 0.00000 | 249.84972 ± 0.92565 |
Mfeat-fourier
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|
| Trees | CatBoost | 0.858667 ± 0.009603 | — | — | — |
| MLP | MLP | 0.820000 ± 0.012247 | — | — | — |
| ViT | TINTO_blur | 0.870000 ± 0.016997 | — | — | — |
| ViT+MLP | TINTO_blur | 0.866667 ± 0.014720 | — | — | — |
| CNN | TINTO_blur | 0.864667 ± 0.007674 | — | — | — |
| CNN+MLP | TINTO_blur | 0.844667 ± 0.021422 | — | — | — |
Architecture Results
Tree Baselines
| Method | Test Accuracy (↑) |
|---|---|
| XGBoost | 0.842000 ± 0.009603 |
| CatBoost | 0.858667 ± 0.009603 |
| LightGBM | 0.857333 ± 0.010382 |
MLP
| Test Accuracy (↑) |
|---|
| 0.820000 ± 0.012247 |
ViT
| Method | Test Accuracy (↑) |
|---|---|
| TINTO_blur | 0.870000 ± 0.016997 |
| IGTD | 0.831333 ± 0.013038 |
| REFINED | 0.807333 ± 0.013622 |
| DistanceMatrix | 0.821333 ± 0.022186 |
| BarGraph | 0.825333 ± 0.018348 |
| Combination | 0.836000 ± 0.017857 |
| SuperTML | 0.742667 ± 0.018166 |
| FeatureWrap | 0.674667 ± 0.022925 |
| BIE | 0.678000 ± 0.021029 |
ViT + MLP
| Method | Test Accuracy (↑) |
|---|---|
| TINTO_blur | 0.866667 ± 0.014720 |
| IGTD | 0.820667 ± 0.016228 |
| REFINED | 0.808000 ± 0.024449 |
| DistanceMatrix | 0.837333 ± 0.011879 |
| BarGraph | 0.824000 ± 0.025755 |
| Combination | 0.820667 ± 0.015528 |
| SuperTML | 0.812000 ± 0.017733 |
| FeatureWrap | 0.816000 ± 0.006831 |
| BIE | 0.805333 ± 0.011205 |
CNN
| Method | Test Accuracy (↑) |
|---|---|
| TINTO_blur | 0.864667 ± 0.007674 |
| IGTD | 0.798667 ± 0.025122 |
| REFINED | 0.804667 ± 0.009309 |
| DistanceMatrix | 0.810000 ± 0.017951 |
| BarGraph | 0.806667 ± 0.026771 |
| Combination | 0.804000 ± 0.008300 |
| SuperTML | 0.661333 ± 0.047469 |
| FeatureWrap | 0.594000 ± 0.018469 |
| BIE | 0.481333 ± 0.117109 |
CNN + MLP
| Method | Test Accuracy (↑) |
|---|---|
| TINTO_blur | 0.844667 ± 0.021422 |
| IGTD | 0.798000 ± 0.011690 |
| REFINED | 0.797333 ± 0.004346 |
| DistanceMatrix | 0.801333 ± 0.008028 |
| BarGraph | 0.817333 ± 0.013208 |
| Combination | 0.812000 ± 0.009603 |
| SuperTML | 0.692000 ± 0.058052 |
| FeatureWrap | 0.801333 ± 0.010954 |
| BIE | 0.518667 ± 0.382235 |