Multiclass Benchmarks
Dataset Overview
Dataset | Instances | Features | Classes | Numeric | Categorical | Target |
---|---|---|---|---|---|---|
Cmc | 1473 | 9 | 3 | 2 | 7 | Contraceptive_method_used |
Cnae-9 | 1080 | 856 | 9 | 856 | 0 | Class |
Quick Check
Dataset | Type | Family / Variant | Test accuracy | Test F1 |
---|---|---|---|---|
Cmc | Best classical | Trees / CatBoost | 0.56380 ± 0.01882 | 0.53572 ± 0.02054 |
Best transformed | ViT / BarGraph | 0.56290 ± 0.01452 | 0.56045 ± 0.01604 | |
Cnae-9 | Best classical | MLP / MLP | 0.97037 ± 0.00805 | 0.96992 ± 0.00846 |
Best transformed | ViT+MLP / REFINED | 0.96173 ± 0.00517 | 0.96194 ± 0.00487 |
Cmc
Leaderboard
Family | Best variant | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
---|---|---|---|---|---|---|
Trees | CatBoost | 0.56380 ± 0.01882 | 0.53572 ± 0.02054 | 6.64661 | — | — |
MLP | MLP | 0.52670 ± 0.01711 | 0.52548 ± 0.01566 | 20.21081 | 899,000 | 53,760 |
ViT | BarGraph | 0.56290 ± 0.01452 | 0.56045 ± 0.01604 | 70.66815 | 3,222,435 | 31,831,688 |
ViT+MLP | Combination | 0.55837 ± 0.01855 | 0.55904 ± 0.01354 | 54.89044 | 1,167,587 | 257,758,240 |
CNN | Combination | 0.55475 ± 0.02707 | 0.55731 ± 0.02529 | 37.43239 | 26,275 | 8,797,568 |
CNN+MLP | Combination | 0.54751 ± 0.01535 | 0.54588 ± 0.00203 | 38.03557 | 33,571 | 96,932,704 |
Architecture Results
Tree Baselines
Method | Test Acc | Test F1 | Test Precision | Test Recall | Train time (s) |
---|---|---|---|---|---|
XGBoost | 0.55385 ± 0.00405 | 0.51932 ± 0.00482 | 0.53787 ± 0.00435 | 0.51698 ± 0.00474 | 0.71723 ± 0.01057 |
CatBoost | 0.56380 ± 0.01882 | 0.53572 ± 0.02054 | 0.55398 ± 0.01577 | 0.53372 ± 0.01914 | 6.64661 ± 0.10867 |
LightGBM | 0.55928 ± 0.01380 | 0.53068 ± 0.01289 | 0.54305 ± 0.01377 | 0.52804 ± 0.01305 | 0.49725 ± 0.09115 |
MLP
Train loss | Val loss | Test loss | Test accuracy | Test precision | Test recall | Test F1 | Test ROC AUC | Test LogLoss | Test MCC | Total params | FLOPs | MACs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.77463 ± 0.01142 | 0.90521 ± 0.00770 | 0.97395 ± 0.00960 | 0.52670 ± 0.01711 | 0.53118 ± 0.01556 | 0.52670 ± 0.01711 | 0.52548 ± 0.01566 | 0.70562 ± 0.00858 | 0.97326 ± 0.01015 | 0.26985 ± 0.02506 | 899,000 | 53,760 | 26,624 |
ViT
Method | Train time (s) | Test Acc | Test F1 | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | #Params | FLOPs |
---|---|---|---|---|---|---|---|---|---|
TINTO | 116.61239 ± 2.29721 | 0.51403 ± 0.01304 | 0.51244 ± 0.01460 | 0.50566 ± 0.01671 | 0.51403 ± 0.01304 | 0.68201 ± 0.00601 | 0.99348 ± 0.00872 | 18,557,531 | 185,223,012 |
IGTD | 148.18030 ± 1.54484 | 0.42986 ± 0.00000 | 0.18478 ± 0.00000 | 0.25846 ± 0.00000 | 0.42986 ± 0.00000 | 0.50000 ± 0.00000 | 1.06630 ± 0.00002 | 18,756,425 | 961,520,359 |
REFINED | 131.15941 ± 5.83637 | 0.55747 ± 0.01675 | 0.57576 ± 0.01607 | 0.55971 ± 0.01710 | 0.55747 ± 0.01675 | 0.73846 ± 0.01551 | 0.91167 ± 0.01975 | 8,034,345 | 405,902,263 |
DistanceMatrix | 128.09730 ± 3.34499 | 0.52941 ± 0.01535 | 0.53164 ± 0.01732 | 0.52638 ± 0.01697 | 0.52941 ± 0.01535 | 0.70803 ± 0.00756 | 0.99914 ± 0.03235 | 4,389,851 | 154,472,600 |
BarGraph | 70.66815 ± 2.09838 | 0.56290 ± 0.01452 | 0.56920 ± 0.01562 | 0.56045 ± 0.01604 | 0.56290 ± 0.01452 | 0.72685 ± 0.00615 | 0.94493 ± 0.01276 | 3,222,435 | 31,831,688 |
Combination | 50.64266 ± 3.07094 | 0.54480 ± 0.02650 | 0.55690 ± 0.01973 | 0.53989 ± 0.02733 | 0.54480 ± 0.02650 | 0.73836 ± 0.00875 | 0.92103 ± 0.01228 | 1,152,003 | 23,116,164 |
SuperTML | 123.16419 ± 3.17526 | 0.52851 ± 0.00671 | 0.52976 ± 0.02017 | 0.52090 ± 0.01065 | 0.52851 ± 0.00671 | 0.71625 ± 0.00255 | 0.95196 ± 0.02299 | 14,585,091 | 480,755,835 |
FeatureWrap | 134.36641 ± 1.40692 | 0.51131 ± 0.01154 | 0.50469 ± 0.01292 | 0.49867 ± 0.02234 | 0.51131 ± 0.01154 | 0.66903 ± 0.00290 | 1.00951 ± 0.00536 | 9,119,321 | 89,289,244 |
BIE | 124.84714 ± 6.21710 | 0.55294 ± 0.01821 | 0.56052 ± 0.01137 | 0.55140 ± 0.01781 | 0.55294 ± 0.01821 | 0.71498 ± 0.00598 | 0.94962 ± 0.00646 | 21,438,339 | 730,066,308 |
ViT + MLP
Method | Train time (s) | Test Acc | Test F1 | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | #Params | FLOPs |
---|---|---|---|---|---|---|---|---|---|
TINTO | 117.50083 ± 2.54110 | 0.49683 ± 0.01409 | 0.48894 ± 0.01589 | 0.48781 ± 0.01639 | 0.49683 ± 0.01409 | 0.68982 ± 0.00179 | 0.99148 ± 0.00483 | 18,560,475 | 3,658,451,148 ± 525,865,378.91535 |
IGTD | 149.76682 ± 7.78152 | 0.52489 ± 0.02950 | 0.52757 ± 0.02946 | 0.51519 ± 0.03628 | 0.52489 ± 0.02950 | 0.69828 ± 0.01713 | 0.97191 ± 0.01441 | 18,356,809 | 23,306,968,083 ± 1,754,835,821.31258 |
REFINED | 125.47250 ± 13.94367 | 0.55113 ± 0.01480 | 0.57143 ± 0.02202 | 0.55077 ± 0.01840 | 0.55113 ± 0.01480 | 0.73435 ± 0.00985 | 0.92641 ± 0.01140 | 7,760,777 | 3,748,450,744 ± 740,852,628.00000 |
DistanceMatrix | 150.77362 ± 4.50453 | 0.54389 ± 0.01930 | 0.55826 ± 0.01901 | 0.54059 ± 0.02547 | 0.54389 ± 0.01930 | 0.71359 ± 0.01572 | 0.98598 ± 0.01211 | 4,368,251 | 5,390,830,368 ± 304,416,115.04435 |
BarGraph | 66.23054 ± 0.78443 | 0.54027 ± 0.03543 | 0.55883 ± 0.03626 | 0.54345 ± 0.03433 | 0.54027 ± 0.03543 | 0.72027 ± 0.02308 | 0.94456 ± 0.02947 | 3,262,851 | 1,024,690,320 ± 90,009,869.65352 |
Combination | 54.89044 ± 0.72794 | 0.55837 ± 0.01855 | 0.57543 ± 0.01271 | 0.55904 ± 0.01354 | 0.55837 ± 0.01855 | 0.74016 ± 0.00807 | 0.91011 ± 0.02151 | 1,167,587 | 257,758,240 ± 50,943,945.25477 |
SuperTML | 143.16534 ± 2.41321 | 0.53122 ± 0.01711 | 0.53484 ± 0.01654 | 0.52844 ± 0.01931 | 0.53122 ± 0.01711 | 0.71292 ± 0.00740 | 0.94419 ± 0.01945 | 14,344,355 | 10,194,143,094 ± 895,464,193.63100 |
FeatureWrap | 139.72991 ± 11.27500 | 0.53122 ± 0.00757 | 0.52775 ± 0.00806 | 0.52487 ± 0.00862 | 0.53122 ± 0.00757 | 0.67457 ± 0.00162 | 1.01469 ± 0.00180 | 8,971,289 | 4,481,517,712 ± 253,067,916.86262 |
BIE | 139.94504 ± 2.70236 | 0.54299 ± 0.02619 | 0.54634 ± 0.02360 | 0.54168 ± 0.02300 | 0.54299 ± 0.02619 | 0.70445 ± 0.01312 | 0.95276 ± 0.01201 | 21,571,715 | 7,198,581,280 ± 1,422,744,547.91564 |
CNN
Method | Train time (s) | Test Acc | Test F1 | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | #Params | FLOPs |
---|---|---|---|---|---|---|---|---|---|
TINTO | 99.38911 ± 0.98989 | 0.47602 ± 0.02904 | 0.47440 ± 0.02399 | 0.46387 ± 0.02599 | 0.47602 ± 0.02904 | 0.65798 ± 0.02125 | 1.03012 ± 0.02895 | 13,356,803 | 477,365,760 |
IGTD | 59.34190 ± 1.03583 | 0.51131 ± 0.01319 | 0.50829 ± 0.01456 | 0.50027 ± 0.01458 | 0.51131 ± 0.01319 | 0.68163 ± 0.00613 | 1.01187 ± 0.04742 | 11,252,291 | 201,483,328 |
REFINED | 86.79629 ± 6.35222 | 0.52398 ± 0.01480 | 0.53632 ± 0.02372 | 0.52086 ± 0.01808 | 0.52398 ± 0.01480 | 0.69901 ± 0.01071 | 1.01439 ± 0.05581 | 1,171,875 | 21,680,800 |
DistanceMatrix | 41.15781 ± 0.98381 | 0.55475 ± 0.02707 | 0.56809 ± 0.02266 | 0.55731 ± 0.02529 | 0.55475 ± 0.02707 | 0.72989 ± 0.01112 | 0.92750 ± 0.01318 | 764,595 | 124,157,184 |
BarGraph | 67.33546 ± 4.62728 | 0.53394 ± 0.02437 | 0.54430 ± 0.02776 | 0.53428 ± 0.02707 | 0.53394 ± 0.02437 | 0.71769 ± 0.00987 | 0.95512 ± 0.02738 | 1,114,931 | 191,019,072 |
Combination | 37.43239 ± 2.38739 | 0.54751 ± 0.01781 | 0.56023 ± 0.01100 | 0.54867 ± 0.01771 | 0.54751 ± 0.01781 | 0.72817 ± 0.00822 | 0.93757 ± 0.02026 | 26,275 | 8,797,568 |
SuperTML | 129.37107 ± 0.30095 | 0.53937 ± 0.02424 | 0.55776 ± 0.02714 | 0.52630 ± 0.01799 | 0.53937 ± 0.02424 | 0.71672 ± 0.00635 | 0.95154 ± 0.01303 | 301,923 | 591,587,968 |
FeatureWrap | 37.97508 ± 3.29608 | 0.50769 ± 0.01613 | 0.50451 ± 0.01334 | 0.49074 ± 0.02660 | 0.50769 ± 0.01613 | 0.68416 ± 0.01095 | 0.98980 ± 0.02289 | 47,035 | 1,170,576 |
BIE | 75.70332 ± 0.15330 | 0.55294 ± 0.01256 | 0.55550 ± 0.00999 | 0.54402 ± 0.01736 | 0.55294 ± 0.01256 | 0.73295 ± 0.01282 | 0.93518 ± 0.01830 | 1,531,619 | 1,648,116,864 |
CNN + MLP
Method | Train time (s) | Test Acc | Test F1 | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | #Params | FLOPs |
---|---|---|---|---|---|---|---|---|---|
TINTO | 58.12462 ± 1.90736 | 0.48688 ± 0.01909 | 0.48561 ± 0.02730 | 0.47571 ± 0.02089 | 0.48688 ± 0.01909 | 0.66685 ± 0.01691 | 1.06728 ± 0.05824 | 11,121,187 | 5,201,861,280 |
IGTD | 67.84435 ± 0.69047 | 0.50045 ± 0.01342 | 0.48193 ± 0.06481 | 0.47949 ± 0.03770 | 0.50045 ± 0.01342 | 0.67919 ± 0.00750 | 1.03052 ± 0.03764 | 10,765,475 | 2,205,616,160 |
REFINED | 104.82458 ± 3.45941 | 0.52127 ± 0.01127 | 0.54837 ± 0.01201 | 0.52341 ± 0.00904 | 0.52127 ± 0.01127 | 0.70467 ± 0.01246 | 0.99529 ± 0.03033 | 1,184,771 | 238,771,104 |
DistanceMatrix | 33.44982 ± 2.31255 | 0.54208 ± 0.02180 | 0.56618 ± 0.01260 | 0.54219 ± 0.02130 | 0.54208 ± 0.02180 | 0.71733 ± 0.01292 | 0.94284 ± 0.01894 | 699,059 | 1,364,290,400 |
BarGraph | 56.81205 ± 2.08185 | 0.53575 ± 0.00248 | 0.55262 ± 0.02107 | 0.53573 ± 0.00406 | 0.53575 ± 0.00248 | 0.71719 ± 0.00791 | 0.95926 ± 0.03626 | 1,105,427 | 2,101,001,056 |
Combination | 38.03557 ± 2.37867 | 0.54480 ± 0.02650 | 0.54956 ± 0.03032 | 0.54352 ± 0.02811 | 0.54480 ± 0.02650 | 0.71769 ± 0.01576 | 0.94702 ± 0.02667 | 33,571 | 96,932,704 |
SuperTML | 136.04745 ± 2.61454 | 0.54751 ± 0.01535 | 0.55968 ± 0.01551 | 0.54463 ± 0.01651 | 0.54751 ± 0.01535 | 0.72676 ± 0.00391 | 0.92772 ± 0.00556 | 353,731 | 6,508,601,440 |
FeatureWrap | 57.12546 ± 1.01150 | 0.51765 ± 0.01304 | 0.53846 ± 0.00605 | 0.51622 ± 0.01403 | 0.51765 ± 0.01304 | 0.68590 ± 0.00847 | 1.00077 ± 0.02192 | 109,771 | 14,251,248 |
BIE | 75.70332 ± 0.15330 | 0.55294 ± 0.01256 | 0.55550 ± 0.00999 | 0.54402 ± 0.01736 | 0.55294 ± 0.01256 | 0.73295 ± 0.01282 | 0.93518 ± 0.01830 | 1,531,619 | 1,648,116,864 |
Cnae-9
Leaderboard
Family | Best variant | Test Accuracy (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
---|---|---|---|---|---|---|
Trees | XGBoost | 0.95432 ± 0.00338 | 0.95461 ± 0.00345 | 8.44052 | — | — |
MLP | MLP | 0.97037 ± 0.00805 | 0.96992 ± 0.00846 | 10.34689 | 706,057 | 1,411,072 |
ViT | IGTD | 0.93827 ± 0.01310 | 0.93838 ± 0.01313 | 26.78283 | 1,269,455 | 12,377,946 |
ViT+MLP | REFINED | 0.96173 ± 0.00517 | 0.96194 ± 0.00487 | 75.39355 | 1,989,455 | 10,130,914,304 |
CNN | IGTD | 0.93704 ± 0.01537 | 0.93723 ± 0.01538 | 23.99849 | 190,897 | 63,914,592 |
CNN+MLP | IGTD | 0.95556 ± 0.00805 | 0.96572 ± 0.00999 | 157.23238 | 2,804,841 | 18,386,727,744 |
Architecture Results
Tree Baselines
Method | Test Acc | Test F1 | Test Precision | Test Recall | Train time (s) |
---|---|---|---|---|---|
XGBoost | 0.95432 ± 0.00338 | 0.95461 ± 0.00345 | 0.95848 ± 0.00428 | 0.95432 ± 0.00338 | 8.44052 ± 0.11371 |
CatBoost | 0.93951 ± 0.00805 | 0.94003 ± 0.00780 | 0.94732 ± 0.00626 | 0.93951 ± 0.00805 | 6.54664 ± 0.10359 |
LightGBM | 0.94938 ± 0.00805 | 0.95004 ± 0.00766 | 0.95597 ± 0.00687 | 0.94938 ± 0.00805 | 8.07665 ± 1.28849 |
MLP
Train loss | Val loss | Test loss | Test accuracy | Test precision | Test recall | Test F1 | Test ROC AUC | Test LogLoss | Test MCC | Total params | FLOPs | MACs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.01342 ± 0.01090 | 0.12372 ± 0.01638 | 0.08709 ± 0.01161 | 0.97037 ± 0.00805 | 0.97239 ± 0.00756 | 0.97037 ± 0.00805 | 0.96992 ± 0.00846 | 0.99961 ± 0.00018 | 0.10320 ± 0.01376 | 0.96701 ± 0.00891 | 706,057 | 1,411,072 | 705,024 |
ViT
Method | Train time (s) | Test Acc | Test F1 | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | #Params | FLOPs |
---|---|---|---|---|---|---|---|---|---|
TINTO | 24.18381 ± 0.14994 | 0.97334 ± 0.00296 | 0.82123 ± 0.03314 | 0.88654 ± 0.02193 | 0.86791 ± 0.03361 | 0.94138 ± 0.01966 | 0.90270 ± 0.01715 | 1,600,609 | 83,777,096 |
IGTD | 26.78283 | 0.93827 ± 0.01310 | 0.93838 ± 0.01313 | — | — | — | — | 1,269,455 | 12,377,946 |
REFINED | 51.73347 ± 8.33281 | 0.97624 ± 0.01070 | 0.92404 ± 0.01751 | 0.92346 ± 0.02849 | 0.93110 ± 0.02637 | 0.99342 ± 0.00305 | 0.32760 ± 0.05950 | 1,269,455 | 12,377,946 |
FeatureWrap | 78.42049 ± 11.15532 | 0.90424 ± 0.00418 | 0.79585 ± 0.01276 | 0.75926 ± 0.01746 | 0.79167 ± 0.01411 | 0.97051 ± 0.00461 | 0.77868 ± 0.08332 | 17,470,447 | 174,454,188 |
ViT + MLP
Method | Train time (s) | Test Acc | Test F1 | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | #Params | FLOPs |
---|---|---|---|---|---|---|---|---|---|
TINTO | 51.20903 ± 5.63295 | 0.98946 ± 0.00302 | 0.95172 ± 0.00838 | 0.96049 ± 0.01883 | 0.96218 ± 0.01829 | 0.99859 ± 0.00163 | 0.13929 ± 0.07387 | 3,893,025 | 464,977,088 ± 91,899,166.11703 |
IGTD | 36.43950 ± 1.83848 | 0.98792 ± 0.00475 | 0.95294 ± 0.01026 | 0.95556 ± 0.01408 | 0.95874 ± 0.01229 | 0.99784 ± 0.00181 | 0.22177 ± 0.09474 | 1,218,401 | 269,517,528 ± 23,674,701.60606 |
REFINED | 75.39355 ± 2.91066 | 0.99004 ± 0.00320 | 0.95299 ± 0.00580 | 0.96173 ± 0.00517 | 0.96512 ± 0.00333 | 0.99862 ± 0.00102 | 0.14492 ± 0.04696 | 1,989,455 | 648,339,608 ± 36,611,247.47466 |
FeatureWrap | 94.19557 ± 3.95154 | 0.98666 ± 0.00948 | 0.93410 ± 0.03600 | 0.94568 ± 0.01598 | 0.95165 ± 0.01262 | 0.99831 ± 0.00069 | 0.21044 ± 0.05732 | 18,746,639 | 2,513,403,744 ± 496,755,031.91467 |
CNN
Method | Train time (s) | Test Acc | Test F1 | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | #Params | FLOPs |
---|---|---|---|---|---|---|---|---|---|
TINTO | 18.50549 ± 0.88259 | 0.70133 ± 0.00457 | 0.63837 ± 0.01416 | 0.68148 ± 0.01549 | 0.69369 ± 0.01499 | 0.93206 ± 0.00367 | 0.96299 ± 0.03732 | 77,937 | 3,614,528 |
IGTD | 23.99849 | 0.93704 ± 0.01537 | 0.93723 ± 0.01538 | — | — | — | — | 190,897 | 63,914,592 |
REFINED | 39.24781 ± 1.83563 | 0.97247 ± 0.00675 | 0.91175 ± 0.02772 | 0.91358 ± 0.00756 | 0.92283 ± 0.00767 | 0.99358 ± 0.00182 | 0.37951 ± 0.03106 | 733,137 | 63,914,592 |
FeatureWrap | 77.13566 ± 0.42878 | 0.96653 ± 0.00509 | 0.91007 ± 0.01701 | 0.88148 ± 0.01104 | 0.89928 ± 0.01478 | 0.99107 ± 0.00174 | 0.53426 ± 0.04917 | 11,985,833 | 1,669,530,816 |
CNN + MLP
Method | Train time (s) | Test Acc | Test F1 | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | #Params | FLOPs |
---|---|---|---|---|---|---|---|---|---|
TINTO | 29.90100 ± 2.27126 | 0.98492 ± 0.00487 | 0.94350 ± 0.01763 | 0.96420 ± 0.00276 | 0.96609 ± 0.00225 | 0.99911 ± 0.00047 | 0.10987 ± 0.02834 | 820,465 | 56,082,752 |
IGTD | 157.23238 | 0.95556 ± 0.00805 | 0.96572 ± 0.00999 | — | — | — | — | 2,804,841 | 18,386,727,744 |
REFINED | 42.14406 ± 2.49779 | 0.98654 ± 0.00336 | 0.94222 ± 0.01663 | 0.95185 ± 0.01187 | 0.95589 ± 0.01141 | 0.99915 ± 0.00040 | 0.15621 ± 0.02966 | 1,422,257 | 718,212,000 |
FeatureWrap | 97.10382 ± 4.24365 | 0.98926 ± 0.00357 | 0.95299 ± 0.01137 | 0.93580 ± 0.01421 | 0.94377 ± 0.01086 | 0.99883 ± 0.00059 | 0.22689 ± 0.08034 | 12,981,545 | 18,386,727,744 |