Multiclass Benchmarks

Dataset Overview

Dataset Instances Features Classes Numeric Categorical Target
Cmc 1473 9 3 2 7 Contraceptive_method_used
Cnae-9 1080 856 9 856 0 Class
Connect-4 67557 42 3 0 42 class
Covtype 581012 54 7 10 44 54
Dna 3186 180 3 0 180 class
Gas 13910 128 6 128 0 Class
Isolet 7797 617 26 617 0 class
Mfeat-fourier 2000 76 10 76 0 class

Quick Check

Dataset Type Family / Variant Test accuracy Test F1
Cmc Best classical Trees / CatBoost 0.55928 ± 0.00248 0.53078 ± 0.00346
Best transformed ViT / BarGraph 0.56290 ± 0.01452 0.56045 ± 0.01604
Cnae-9 Best classical MLP / MLP 0.97037 ± 0.00805 0.96992 ± 0.00846
Best transformed ViT+MLP / SuperTML 0.97037 ± 0.00517 0.97035 ± 0.00532
Connect-4 Best classical Trees / XGBoost 0.86860 ± 0.00059 0.73852 ± 0.00118
Best transformed ViT+MLP / IGTD 0.86819 ± 0.00221 0.86365 ± 0.00250
Covtype Best classical MLP / MLP 0.96310 ± 0.00000 0.96312 ± 0.00000
Best transformed ViT+MLP / REFINED 0.97050 ± 0.00000 0.97051 ± 0.00000
Dna Best classical Trees / LightGBM 0.96904 ± 0.00229 0.96586 ± 0.00223
Best transformed ViT+MLP / IGTD 0.96569 ± 0.00482 0.96579 ± 0.00484
Gas Best classical Trees / CatBoost 0.99482 ± 0.00021 0.99480 ± 0.00026
Best transformed CNN / REFINED 0.99559 ± 0.00092 0.99559 ± 0.00092
Isolet Best classical Trees / XGBoost 0.96222 ± 0.00316 0.96221 ± 0.00314
Best transformed ViT / REFINED 0.96376 ± 0.00268 0.96371 ± 0.00267
Mfeat-fourier Best classical Trees / CatBoost 0.858667 ± 0.009603 N/A
Best transformed ViT / TINTO_blur 0.870000 ± 0.016997 N/A

Cmc

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees CatBoost 0.55928 ± 0.00248 0.53078 ± 0.00346 15.49520 ± 0.52367
MLP MLP 0.52670 ± 0.01711 0.52548 ± 0.01566 20.21081 ± 0.15326 899.00000 ± 0.00000
ViT BarGraph 0.56290 ± 0.01452 0.56045 ± 0.01604 70.66814 ± 2.09838 3,222,435 ± 0.00000 31,831,688 ± 0.00000
ViT+MLP Combination 0.55837 ± 0.01855 0.55904 ± 0.01354 54.89044 ± 0.72794 1,167,587 ± 0.00000 257,758,240 ± 50,943,945.25477
CNN DistanceMatrix 0.55475 ± 0.02707 0.55731 ± 0.02529 41.15781 ± 0.98381 764,595 ± 0.00000 124,157,184 ± 0.00000
CNN+MLP SuperTML 0.54751 ± 0.01534 0.54463 ± 0.01651 136.04745 ± 2.61454 353,731 ± 0.00000 6,508,601,440 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Train time (s) #Params FLOPs
CatBoost 0.59088 ± 0.00467 0.60815 ± 0.00686 0.55928 ± 0.00248 0.53078 ± 0.00346 0.54658 ± 0.00803 0.52793 ± 0.00371 15.49520 ± 0.52367
LightGBM 0.62231 ± 0.00556 0.61086 ± 0.00715 0.55928 ± 0.01380 0.53068 ± 0.01289 0.54304 ± 0.01377 0.52804 ± 0.01305 0.49725 ± 0.09115
XGBoost 0.67352 ± 0.00421 0.60091 ± 0.00743 0.54932 ± 0.00248 0.52019 ± 0.00285 0.53467 ± 0.00314 0.51779 ± 0.00278 0.36403 ± 0.00770
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params Train time (s)
MLP 0.64597 ± 0.00873 0.56199 ± 0.00981 0.52670 ± 0.01711 0.52548 ± 0.01566 0.53118 ± 0.01556 0.52670 ± 0.01711 0.70562 ± 0.00858 0.97326 ± 0.01014 0.26985 ± 0.02506 899.00000 ± 0.00000 20.21081 ± 0.15326
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.58060 ± 0.02010 0.54480 ± 0.02184 0.51403 ± 0.01304 0.50566 ± 0.01671 0.51244 ± 0.01460 0.51403 ± 0.01304 0.68201 ± 0.00601 0.99348 ± 0.00872 0.23816 ± 0.02143 18,557,531 ± 0.00000 185,223,012 ± 0.00000 116.61239 ± 2.29721
IGTD 0.42677 ± 0.00000 0.42534 ± 0.00000 0.42986 ± 0.00000 0.25846 ± 0.00000 0.18478 ± 0.00000 0.42986 ± 0.00000 0.50000 ± 0.00000 1.06630 ± 0.00002 0.00000 ± 0.00000 18,756,425 ± 0.00000 961,520,359 ± 0.00000 148.18030 ± 1.54484
REFINED 0.61028 ± 0.02942 0.60543 ± 0.02008 0.55747 ± 0.01675 0.55971 ± 0.01710 0.57576 ± 0.01606 0.55747 ± 0.01675 0.73846 ± 0.01551 0.91166 ± 0.01975 0.32415 ± 0.02569 8,034,345 ± 0.00000 405,902,263 ± 0.00000 131.15941 ± 5.83637
DistanceMatrix 0.62405 ± 0.04610 0.57014 ± 0.03247 0.52941 ± 0.01534 0.52638 ± 0.01697 0.53164 ± 0.01732 0.52941 ± 0.01534 0.70803 ± 0.00756 0.99914 ± 0.03235 0.27248 ± 0.02357 4,389,851 ± 0.00000 154,472,600 ± 0.00000 128.09730 ± 3.34499
BarGraph 0.62464 ± 0.01715 0.59186 ± 0.01849 0.56290 ± 0.01452 0.56045 ± 0.01604 0.56920 ± 0.01562 0.56290 ± 0.01452 0.72685 ± 0.00615 0.94493 ± 0.01276 0.32581 ± 0.02336 3,222,435 ± 0.00000 31,831,688 ± 0.00000 70.66814 ± 2.09838
Combination 0.59476 ± 0.00835 0.60091 ± 0.01735 0.54480 ± 0.02650 0.53989 ± 0.02733 0.55690 ± 0.01973 0.54480 ± 0.02650 0.73836 ± 0.00875 0.92103 ± 0.01228 0.29605 ± 0.03647 1,152,003 ± 0.00000 23,116,164 ± 0.00000 50.64266 ± 3.07093
SuperTML 0.62250 ± 0.01884 0.59457 ± 0.01180 0.52851 ± 0.00671 0.52090 ± 0.01065 0.52975 ± 0.02017 0.52851 ± 0.00671 0.71625 ± 0.00255 0.95196 ± 0.02299 0.26546 ± 0.01895 14,585,091 ± 0.00000 480,755,835 ± 0.00000 123.16419 ± 3.17526
FeatureWrap 0.52434 ± 0.01430 0.56652 ± 0.00870 0.51131 ± 0.01154 0.49867 ± 0.02234 0.50469 ± 0.01292 0.51131 ± 0.01154 0.66903 ± 0.00290 1.00951 ± 0.00536 0.22990 ± 0.01796 9,119,321 ± 0.00000 89,289,244 ± 0.00000 134.36640 ± 1.40692
BIE 0.59573 ± 0.00771 0.58914 ± 0.02741 0.55294 ± 0.01821 0.55140 ± 0.01781 0.56052 ± 0.01137 0.55294 ± 0.01821 0.71498 ± 0.00598 0.94962 ± 0.00646 0.30942 ± 0.02454 21,438,339 ± 0.00000 730,066,308 ± 0.00000 124.84714 ± 6.21710
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.57595 ± 0.01134 0.57285 ± 0.00686 0.49683 ± 0.01409 0.48781 ± 0.01639 0.48894 ± 0.01589 0.49683 ± 0.01409 0.68981 ± 0.00179 0.99148 ± 0.00483 0.20697 ± 0.02791 18,560,475 ± 0.00000 3,658,451,148 ± 525,865,378.91535 117.50083 ± 2.54110
IGTD 0.60815 ± 0.04145 0.56471 ± 0.04793 0.52489 ± 0.02950 0.51519 ± 0.03628 0.52757 ± 0.02946 0.52489 ± 0.02950 0.69828 ± 0.01713 0.97191 ± 0.01441 0.25929 ± 0.05176 18,356,809 ± 0.00000 23,306,968,083 ± 1,754,835,821.31258 149.76682 ± 7.78152
REFINED 0.61125 ± 0.01059 0.60272 ± 0.00981 0.55113 ± 0.01480 0.55077 ± 0.01840 0.57143 ± 0.02202 0.55113 ± 0.01480 0.73435 ± 0.00985 0.92641 ± 0.01140 0.31665 ± 0.02847 7,760,777 ± 0.00000 3,748,450,744 ± 740,852,627.99955 125.47250 ± 13.94367
DistanceMatrix 0.64753 ± 0.03200 0.56561 ± 0.02217 0.54389 ± 0.01930 0.54059 ± 0.02547 0.55826 ± 0.01901 0.54389 ± 0.01930 0.71359 ± 0.01572 0.98598 ± 0.01211 0.30462 ± 0.03669 4,368,251 ± 0.00000 5,390,830,368 ± 304,416,115.04435 150.77362 ± 4.50453
BarGraph 0.62987 ± 0.01155 0.58552 ± 0.02161 0.54027 ± 0.03543 0.54345 ± 0.03433 0.55883 ± 0.03626 0.54027 ± 0.03543 0.72027 ± 0.02308 0.94456 ± 0.02947 0.30260 ± 0.05185 3,262,851 ± 0.00000 1,024,690,320 ± 90,009,869.65352 66.23054 ± 0.78443
Combination 0.59302 ± 0.01491 0.60905 ± 0.01136 0.55837 ± 0.01855 0.55904 ± 0.01354 0.57543 ± 0.01271 0.55837 ± 0.01855 0.74016 ± 0.00807 0.91011 ± 0.02151 0.32445 ± 0.02101 1,167,587 ± 0.00000 257,758,240 ± 50,943,945.25477 54.89044 ± 0.72794
SuperTML 0.60737 ± 0.01098 0.59728 ± 0.01319 0.53122 ± 0.01711 0.52844 ± 0.01931 0.53484 ± 0.01654 0.53122 ± 0.01711 0.71292 ± 0.00740 0.94419 ± 0.01945 0.27085 ± 0.02917 14,344,355 ± 0.00000 10,194,143,094 ± 895,464,193.631 143.16534 ± 2.41321
FeatureWrap 0.52609 ± 0.00816 0.58371 ± 0.00905 0.53122 ± 0.00757 0.52487 ± 0.00862 0.52775 ± 0.00806 0.53122 ± 0.00757 0.67457 ± 0.00162 1.01469 ± 0.00180 0.26195 ± 0.01374 8,971,289 ± 0.00000 4,481,517,712 ± 253,067,916.86262 139.72991 ± 11.27500
BIE 0.59282 ± 0.02763 0.56833 ± 0.02428 0.54299 ± 0.02619 0.54168 ± 0.02300 0.54634 ± 0.02360 0.54299 ± 0.02619 0.70445 ± 0.01312 0.95276 ± 0.01201 0.29270 ± 0.03527 21,571,715 ± 0.00000 7,198,581,280 ± 1,422,744,547.91564 139.94504 ± 2.70236
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.54394 ± 0.01165 0.52851 ± 0.01580 0.47602 ± 0.02904 0.46387 ± 0.02599 0.47440 ± 0.02399 0.47602 ± 0.02904 0.65797 ± 0.02125 1.03012 ± 0.02895 0.17912 ± 0.03591 13,356,803 ± 0.00000 477,365,760 ± 0.00000 99.38911 ± 0.98989
IGTD 0.64093 ± 0.03060 0.50860 ± 0.04452 0.51131 ± 0.01319 0.50027 ± 0.01458 0.50829 ± 0.01456 0.51131 ± 0.01319 0.68163 ± 0.00613 1.01187 ± 0.04742 0.23748 ± 0.02476 11,252,291 ± 0.00000 201,483,328 ± 0.00000 59.34190 ± 1.03583
REFINED 0.60330 ± 0.02913 0.56923 ± 0.03481 0.52398 ± 0.01480 0.52086 ± 0.01808 0.53631 ± 0.02372 0.52398 ± 0.01480 0.69901 ± 0.01071 1.01439 ± 0.05581 0.27037 ± 0.01940 1,171,875 ± 0.00000 21,680,800 ± 0.00000 86.79629 ± 6.35222
DistanceMatrix 0.59302 ± 0.02564 0.59276 ± 0.02170 0.55475 ± 0.02707 0.55731 ± 0.02529 0.56809 ± 0.02266 0.55475 ± 0.02707 0.72989 ± 0.01112 0.92750 ± 0.01318 0.32104 ± 0.03662 764,595 ± 0.00000 124,157,184 ± 0.00000 41.15781 ± 0.98381
BarGraph 0.64171 ± 0.00896 0.59728 ± 0.01061 0.53394 ± 0.02437 0.53428 ± 0.02706 0.54430 ± 0.02776 0.53394 ± 0.02437 0.71769 ± 0.00987 0.95512 ± 0.02738 0.28367 ± 0.04156 1,114,931 ± 0.00000 191,019,072 ± 0.00000 67.33545 ± 4.62728
Combination 0.60892 ± 0.00926 0.59095 ± 0.01304 0.54751 ± 0.01781 0.54866 ± 0.01771 0.56023 ± 0.01100 0.54751 ± 0.01781 0.72817 ± 0.00822 0.93757 ± 0.02026 0.30937 ± 0.02199 26,275 ± 0.00000 8,797,568 ± 0.00000 37.43239 ± 2.38739
SuperTML 0.59224 ± 0.01423 0.57828 ± 0.01793 0.53937 ± 0.02424 0.52629 ± 0.01800 0.55776 ± 0.02714 0.53937 ± 0.02424 0.71672 ± 0.00634 0.95154 ± 0.01303 0.28218 ± 0.02980 301,923 ± 0.00000 591,587,968 ± 0.00000 129.37107 ± 0.30095
FeatureWrap 0.56683 ± 0.03371 0.56018 ± 0.02294 0.50769 ± 0.01613 0.49073 ± 0.02660 0.50451 ± 0.01334 0.50769 ± 0.01613 0.68416 ± 0.01095 0.98980 ± 0.02288 0.21870 ± 0.03122 47,035 ± 0.00000 1,170,576 ± 0.00000 37.97507 ± 3.29608
BIE 0.62619 ± 0.03554 0.60000 ± 0.00991 0.55294 ± 0.01256 0.54402 ± 0.01736 0.55550 ± 0.00999 0.55294 ± 0.01256 0.73294 ± 0.01282 0.93518 ± 0.01830 0.30180 ± 0.01825 1,531,619 ± 0.00000 1,648,116,864 ± 0.00000 75.70332 ± 0.15330
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.58138 ± 0.02148 0.54570 ± 0.02137 0.48688 ± 0.01909 0.47571 ± 0.02089 0.48561 ± 0.02730 0.48688 ± 0.01909 0.66685 ± 0.01691 1.06727 ± 0.05824 0.19771 ± 0.03222 11,121,187 ± 0.00000 5,201,861,280 ± 0.00000 58.12462 ± 1.90735
IGTD 0.60446 ± 0.05032 0.54118 ± 0.02908 0.50045 ± 0.01342 0.47949 ± 0.03770 0.48193 ± 0.06481 0.50045 ± 0.01342 0.67919 ± 0.00750 1.03052 ± 0.03764 0.21786 ± 0.04125 10,765,475 ± 0.00000 2,205,616,160 ± 0.00000 67.84435 ± 0.69047
REFINED 0.61455 ± 0.02869 0.55566 ± 0.02507 0.52127 ± 0.01127 0.52341 ± 0.00904 0.54837 ± 0.01201 0.52127 ± 0.01127 0.70467 ± 0.01246 0.99529 ± 0.03033 0.27771 ± 0.01275 1,184,771 ± 0.00000 238,771,104 ± 0.00000 104.82458 ± 3.45941
DistanceMatrix 0.63220 ± 0.01282 0.61810 ± 0.02977 0.54208 ± 0.02179 0.54219 ± 0.02130 0.56618 ± 0.01260 0.54208 ± 0.02179 0.71733 ± 0.01292 0.94284 ± 0.01894 0.30570 ± 0.02134 699,059 ± 0.00000 1,364,290,400 ± 0.00000 33.44982 ± 2.31255
BarGraph 0.66149 ± 0.03365 0.60633 ± 0.04147 0.53575 ± 0.00248 0.53573 ± 0.00406 0.55262 ± 0.02107 0.53575 ± 0.00248 0.71719 ± 0.00791 0.95926 ± 0.03626 0.28710 ± 0.01162 1,105,427 ± 0.00000 2,101,001,056 ± 0.00000 56.81205 ± 2.08185
Combination 0.63628 ± 0.02356 0.60091 ± 0.02226 0.54480 ± 0.02650 0.54351 ± 0.02811 0.54956 ± 0.03032 0.54480 ± 0.02650 0.71769 ± 0.01576 0.94702 ± 0.02667 0.29524 ± 0.04483 33,571 ± 0.00000 96,932,704 ± 0.00000 38.03557 ± 2.37867
SuperTML 0.60175 ± 0.01094 0.57738 ± 0.01380 0.54751 ± 0.01534 0.54463 ± 0.01651 0.55968 ± 0.01551 0.54751 ± 0.01534 0.72676 ± 0.00391 0.92772 ± 0.00556 0.30052 ± 0.02404 353,731 ± 0.00000 6,508,601,440 ± 0.00000 136.04745 ± 2.61454
FeatureWrap 0.58332 ± 0.02737 0.52941 ± 0.02373 0.51765 ± 0.01304 0.51622 ± 0.01403 0.53846 ± 0.00605 0.51765 ± 0.01304 0.68590 ± 0.00847 1.00077 ± 0.02192 0.26501 ± 0.01341 109,771 ± 0.00000 14,251,248 ± 0.00000 57.12546 ± 1.01150
BIE 0.65936 ± 0.02150 0.56742 ± 0.01042 0.54480 ± 0.00405 0.54588 ± 0.00203 0.55830 ± 0.01191 0.54480 ± 0.00405 0.72639 ± 0.01346 0.95990 ± 0.02545 0.30242 ± 0.00778 1,648,579 ± 0.00000 1,648,350,240 ± 0.00000 77.10235 ± 0.14990

Cnae-9

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees XGBoost 0.95432 ± 0.00338 0.95461 ± 0.00345 8.44052 ± 0.11371
MLP MLP 0.97037 ± 0.00805 0.96992 ± 0.00846 10.34689 ± 0.44999 706,057 ± 0.00000 1,411,072 ± 0.00000
ViT IGTD 0.93827 ± 0.01310 0.93838 ± 0.01313 26.78283 ± 1.99133 476,097 ± 0.00000 9,725,388 ± 0.00000
ViT+MLP SuperTML 0.97037 ± 0.00517 0.97035 ± 0.00532 42.45165 ± 1.58963 3,207,145 ± 0.00000 10,130,914,304 ± 421,536,368.16605
CNN SuperTML 0.94691 ± 0.00552 0.94697 ± 0.00573 155.72271 ± 0.08343 2,081,961 ± 0.00000 2,760,667,584 ± 0.00000
CNN+MLP SuperTML 0.96543 ± 0.01033 0.96571 ± 0.00999 157.23238 ± 0.21957 2,804,841 ± 0.00000 30,383,234,816 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Train time (s) #Params FLOPs
CatBoost 1.00000 ± 0.00000 0.93210 ± 0.00756 0.93951 ± 0.00805 0.94003 ± 0.00780 0.94732 ± 0.00626 0.93951 ± 0.00805 6.54664 ± 0.10359
LightGBM 0.98809 ± 0.00162 0.94444 ± 0.00000 0.94938 ± 0.00805 0.95004 ± 0.00766 0.95597 ± 0.00687 0.94938 ± 0.00805 8.07665 ± 1.28849
XGBoost 0.99868 ± 0.00000 0.94444 ± 0.00000 0.95432 ± 0.00338 0.95461 ± 0.00345 0.95848 ± 0.00428 0.95432 ± 0.00338 8.44052 ± 0.11371
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.99788 ± 0.00201 0.96914 ± 0.00976 0.97037 ± 0.00805 0.96992 ± 0.00846 0.97239 ± 0.00756 0.97037 ± 0.00805 0.99961 ± 0.00018 0.10320 ± 0.01376 0.96701 ± 0.00891 706,057 ± 0.00000 1,411,072 ± 0.00000 10.34689 ± 0.44999
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.70635 ± 0.04166 0.67407 ± 0.02019 0.68642 ± 0.02243 0.68280 ± 0.01561 0.70297 ± 0.01509 0.68642 ± 0.02243 0.93421 ± 0.00295 0.93329 ± 0.01252 0.65048 ± 0.02538 3,142,689 ± 0.00000 31,518,296 ± 0.00000 49.77751 ± 2.40462
IGTD 0.99868 ± 0.00296 0.92593 ± 0.01852 0.93827 ± 0.01310 0.93838 ± 0.01313 0.94212 ± 0.01160 0.93827 ± 0.01310 0.99494 ± 0.00151 0.23574 ± 0.03603 0.93106 ± 0.01450 476,097 ± 0.00000 9,725,388 ± 0.00000 26.78283 ± 1.99133
REFINED 0.99550 ± 0.00865 0.93210 ± 0.01574 0.92346 ± 0.02849 0.92387 ± 0.02848 0.93110 ± 0.02637 0.92346 ± 0.02849 0.99342 ± 0.00305 0.32760 ± 0.05950 0.91483 ± 0.03174 1,269,455 ± 0.00000 12,377,946 ± 0.00000 51.73347 ± 8.33281
BarGraph 0.99709 ± 0.00367 0.92716 ± 0.00916 0.93333 ± 0.01821 0.93401 ± 0.01758 0.94037 ± 0.01197 0.93333 ± 0.01821 0.99698 ± 0.00196 0.22455 ± 0.07629 0.92588 ± 0.01960 214,697,577 ± 0.00000 1,724,899,336 ± 0.00000 378.47980 ± 12.39942
SuperTML 0.39365 ± 0.08137 0.39506 ± 0.06984 0.39876 ± 0.06319 0.34760 ± 0.07799 0.47892 ± 0.09961 0.39876 ± 0.06319 0.82871 ± 0.02798 1.51644 ± 0.14370 0.37221 ± 0.02346 2,499,945 ± 0.00000 251,634,112 ± 0.00000 32.09513 ± 0.48480
FeatureWrap 0.96746 ± 0.01174 0.81605 ± 0.01187 0.75926 ± 0.01746 0.76072 ± 0.01852 0.79167 ± 0.01411 0.75926 ± 0.01746 0.97051 ± 0.00461 0.77868 ± 0.08332 0.73310 ± 0.01861 17,470,447 ± 0.00000 174,454,188 ± 0.00000 78.42049 ± 11.15532
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.99815 ± 0.00221 0.95679 ± 0.00756 0.96049 ± 0.01883 0.96042 ± 0.01906 0.96218 ± 0.01829 0.96049 ± 0.01883 0.99859 ± 0.00162 0.13929 ± 0.07387 0.95578 ± 0.02106 3,893,025 ± 0.00000 464,977,088 ± 91,899,166.11703 51.20903 ± 5.63295
IGTD 0.99815 ± 0.00274 0.95803 ± 0.00916 0.95556 ± 0.01408 0.95568 ± 0.01408 0.95874 ± 0.01229 0.95556 ± 0.01408 0.99784 ± 0.00181 0.22177 ± 0.09474 0.95040 ± 0.01557 1,218,401 ± 0.00000 269,517,528 ± 23,674,701.60606 36.43950 ± 1.83848
REFINED 0.99974 ± 0.00059 0.95803 ± 0.00517 0.96173 ± 0.00517 0.96194 ± 0.00487 0.96512 ± 0.00333 0.96173 ± 0.00517 0.99862 ± 0.00102 0.14492 ± 0.04696 0.95734 ± 0.00561 1,989,455 ± 0.00000 648,339,608 ± 36,611,247.47466 75.39355 ± 2.91066
SuperTML 0.99947 ± 0.00072 0.97037 ± 0.00916 0.97037 ± 0.00517 0.97035 ± 0.00532 0.97305 ± 0.00492 0.97037 ± 0.00517 0.99973 ± 0.00005 0.09663 ± 0.01046 0.96701 ± 0.00575 3,207,145 ± 0.00000 10,130,914,304 ± 421,536,368.16605 42.45165 ± 1.58963
FeatureWrap 0.98783 ± 0.01648 0.94074 ± 0.03255 0.94568 ± 0.01598 0.94587 ± 0.01549 0.95165 ± 0.01262 0.94568 ± 0.01598 0.99831 ± 0.00069 0.21044 ± 0.05732 0.93962 ± 0.01761 18,746,639 ± 0.00000 2,513,403,744 ± 496,755,031.91467 94.19557 ± 3.95154
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.79100 ± 0.01282 0.67654 ± 0.01203 0.68148 ± 0.01549 0.68115 ± 0.01536 0.69369 ± 0.01499 0.68148 ± 0.01549 0.93206 ± 0.00367 0.96300 ± 0.03732 0.64317 ± 0.01736 77,937 ± 0.00000 3,614,528 ± 0.00000 18.50549 ± 0.88259
IGTD 1.00000 ± 0.00000 0.86914 ± 0.02908 0.93704 ± 0.01537 0.93723 ± 0.01538 0.94180 ± 0.01521 0.93704 ± 0.01537 0.99752 ± 0.00138 0.22672 ± 0.07117 0.92973 ± 0.01727 190,897 ± 0.00000 22,969,392 ± 0.00000 23.99849 ± 3.09947
REFINED 0.99180 ± 0.00616 0.92099 ± 0.02484 0.91358 ± 0.00756 0.91345 ± 0.00719 0.92283 ± 0.00767 0.91358 ± 0.00756 0.99358 ± 0.00182 0.37951 ± 0.03106 0.90395 ± 0.00863 733,137 ± 0.00000 63,914,592 ± 0.00000 39.24781 ± 1.83563
SuperTML 1.00000 ± 0.00000 0.92469 ± 0.00805 0.94691 ± 0.00552 0.94697 ± 0.00573 0.95051 ± 0.00624 0.94691 ± 0.00552 0.99771 ± 0.00068 0.23146 ± 0.01665 0.94072 ± 0.00625 2,081,961 ± 0.00000 2,760,667,584 ± 0.00000 155.72271 ± 0.08343
FeatureWrap 0.99418 ± 0.00424 0.91975 ± 0.01512 0.88148 ± 0.01104 0.88317 ± 0.01134 0.89928 ± 0.01478 0.88148 ± 0.01104 0.99107 ± 0.00173 0.53426 ± 0.04917 0.86863 ± 0.01292 11,985,833 ± 0.00000 1,669,530,816 ± 0.00000 77.13566 ± 0.42878
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.99762 ± 0.00217 0.94938 ± 0.01598 0.96420 ± 0.00276 0.96424 ± 0.00263 0.96609 ± 0.00225 0.96420 ± 0.00276 0.99911 ± 0.00047 0.10987 ± 0.02834 0.95995 ± 0.00305 820,465 ± 0.00000 56,082,752 ± 0.00000 29.90100 ± 2.27126
IGTD 0.99894 ± 0.00237 0.94815 ± 0.01831 0.95556 ± 0.00805 0.95514 ± 0.00828 0.95896 ± 0.00707 0.95556 ± 0.00805 0.99932 ± 0.00017 0.16153 ± 0.04349 0.95052 ± 0.00886 1,067,889 ± 0.00000 271,943,232 ± 0.00000 30.57734 ± 1.64419
REFINED 0.99868 ± 0.00229 0.94815 ± 0.01487 0.95185 ± 0.01187 0.95199 ± 0.01212 0.95589 ± 0.01141 0.95185 ± 0.01187 0.99915 ± 0.00040 0.15621 ± 0.02966 0.94634 ± 0.01320 1,422,257 ± 0.00000 718,212,000 ± 0.00000 42.14406 ± 2.49778
SuperTML 0.99868 ± 0.00187 0.95309 ± 0.00936 0.96543 ± 0.01033 0.96571 ± 0.00999 0.96891 ± 0.00881 0.96543 ± 0.01033 0.99940 ± 0.00038 0.13416 ± 0.03825 0.96151 ± 0.01145 2,804,841 ± 0.00000 30,383,234,816 ± 0.00000 157.23238 ± 0.21957
FeatureWrap 0.99815 ± 0.00221 0.95803 ± 0.01014 0.93580 ± 0.01421 0.93599 ± 0.01373 0.94377 ± 0.01086 0.93580 ± 0.01421 0.99883 ± 0.00059 0.22689 ± 0.08034 0.92877 ± 0.01565 12,981,545 ± 0.00000 18,386,727,744 ± 0.00000 97.10381 ± 4.24365

Connect-4

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees XGBoost 0.86860 ± 0.00059 0.73852 ± 0.00118 7.46423 ± 0.41959
MLP MLP 0.86300 ± 0.00099 0.85441 ± 0.00174 137.17053 ± 1.67854 66,563 ± 0.00000 132,608 ± 0.00000
ViT Combination 0.85852 ± 0.00537 0.85227 ± 0.00557 6,459.70419 ± 737.80948 14,165,371 ± 0.00000 4,403,208,502,428.7998 ± 9,719,427,985,675.61133
ViT+MLP IGTD 0.86819 ± 0.00221 0.86365 ± 0.00250 3,294.58531 ± 943.89277 19,592,315 ± 0.00000 1,226,724,971,052.80005 ± 2,725,978,272,247.06592
CNN BIE 0.85437 ± 0.00345 0.84537 ± 0.00593 4,724.28435 ± 433.84260 1,606,067 ± 0.00000 1,189,191,183,379.19995 ± 2,597,463,716,358.88281
CNN+MLP BarGraph 0.85382 ± 0.00278 0.84488 ± 0.00467 4,804.959 ± 449.91699 1,163,859 ± 0.00000 519,475,749,942.40002 ± 1,139,923,846,571.62622
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Train time (s) #Params FLOPs
CatBoost 0.93083 ± 0.00226 0.86303 ± 0.00121 0.85506 ± 0.00133 0.70725 ± 0.00577 0.74560 ± 0.00578 0.68951 ± 0.00424 181.61038 ± 1.83578
LightGBM 0.94523 ± 0.00000 0.86452 ± 0.00000 0.85554 ± 0.00000 0.71701 ± 0.00000 0.74147 ± 0.00000 0.70200 ± 0.00000 3.30468 ± 0.40202
XGBoost 0.98862 ± 0.00038 0.87279 ± 0.00098 0.86860 ± 0.00059 0.73852 ± 0.00118 0.76687 ± 0.00292 0.72174 ± 0.00139 7.46423 ± 0.41959
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.93258 ± 0.00333 0.87249 ± 0.00218 0.86300 ± 0.00099 0.85441 ± 0.00174 0.85070 ± 0.00185 0.86300 ± 0.00099 0.95992 ± 0.00038 0.35456 ± 0.00105 0.71707 ± 0.00233 66,563 ± 0.00000 132,608 ± 0.00000 137.17053 ± 1.67854
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.71345 ± 0.00240 0.69485 ± 0.00150 0.69743 ± 0.00233 0.65065 ± 0.00331 0.65303 ± 0.00402 0.69743 ± 0.00233 0.77163 ± 0.00114 0.70665 ± 0.00229 0.29669 ± 0.00618 8,472,451 ± 0.00000 899,883,414,152.80005 ± 2,001,077,131,734.39478 3,734.34874 ± 970.17133
IGTD 0.90747 ± 0.01085 0.86424 ± 0.00429 0.85410 ± 0.00323 0.84736 ± 0.00454 0.84377 ± 0.00487 0.85410 ± 0.00323 0.95671 ± 0.00134 0.38029 ± 0.00345 0.70014 ± 0.00722 19,939,899 ± 0.00000 498,074,710,800 ± 1,106,963,680,989.76514 2,967.25645 ± 864.50463
REFINED 0.90624 ± 0.01178 0.86136 ± 0.00258 0.85717 ± 0.00204 0.85050 ± 0.00308 0.84701 ± 0.00320 0.85717 ± 0.00204 0.95768 ± 0.00105 0.35784 ± 0.00402 0.70651 ± 0.00349 6,339,465 ± 0.00000 7,611,645,317,385.59961 ± 16,910,428,256,738.60742 4,837.46139 ± 113.28264
DistanceMatrix 0.91426 ± 0.01254 0.86442 ± 0.00132 0.85777 ± 0.00343 0.85384 ± 0.00386 0.85109 ± 0.00423 0.85777 ± 0.00343 0.95841 ± 0.00125 0.37113 ± 0.00475 0.71012 ± 0.00675 15,615,579 ± 0.00000 353,206,830,993.59998 ± 767,325,631,115.39844 5,650.87453 ± 828.55672
BarGraph 0.90582 ± 0.01062 0.85976 ± 0.00390 0.85313 ± 0.00217 0.84707 ± 0.00316 0.84343 ± 0.00380 0.85313 ± 0.00217 0.95580 ± 0.00126 0.37646 ± 0.00563 0.69867 ± 0.00499 7,677,019 ± 0.00000 260,700,949,174.39999 ± 573,462,935,121.85742 4,836.73781 ± 350.10447
Combination 0.91602 ± 0.01066 0.86643 ± 0.00471 0.85852 ± 0.00537 0.85227 ± 0.00557 0.84892 ± 0.00580 0.85852 ± 0.00537 0.95984 ± 0.00207 0.36214 ± 0.00596 0.70891 ± 0.00975 14,165,371 ± 0.00000 4,403,208,502,428.7998 ± 9,719,427,985,675.61133 6,459.70419 ± 737.80948
SuperTML 0.90546 ± 0.00765 0.85660 ± 0.00373 0.84626 ± 0.00304 0.84026 ± 0.00287 0.83728 ± 0.00336 0.84626 ± 0.00304 0.95164 ± 0.00133 0.38937 ± 0.00557 0.68451 ± 0.00828 17,791,747 ± 0.00000 433,472,959,452 ± 953,674,396,877.40051 7,495.51417 ± 870.92907
FeatureWrap 0.91074 ± 0.00977 0.86006 ± 0.00228 0.85054 ± 0.00233 0.84247 ± 0.00421 0.83902 ± 0.00431 0.85054 ± 0.00233 0.95429 ± 0.00065 0.38311 ± 0.00555 0.69225 ± 0.00492 2,540,315 ± 0.00000 178,853,395,445.60001 ± 395,507,779,949.31891 2,406.81428 ± 636.98173
BIE 0.90568 ± 0.01360 0.86290 ± 0.00319 0.85528 ± 0.00200 0.84804 ± 0.00316 0.84415 ± 0.00328 0.85528 ± 0.00200 0.95760 ± 0.00158 0.36426 ± 0.00243 0.70120 ± 0.00352 13,433,115 ± 0.00000 1,045,166,154,542.40002 ± 2,307,449,081,091.5 5,775.03304 ± 305.90916
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.93435 ± 0.00783 0.87204 ± 0.00182 0.86282 ± 0.00318 0.85837 ± 0.00369 0.85545 ± 0.00413 0.86282 ± 0.00318 0.96241 ± 0.00079 0.34073 ± 0.00374 0.71943 ± 0.00699 8,640,483 ± 0.00000 912,817,909,791.19995 ± 2,020,171,485,487.94141 4,188.90154 ± 1,125.38759
IGTD 0.94931 ± 0.00681 0.87547 ± 0.00193 0.86819 ± 0.00221 0.86365 ± 0.00250 0.86086 ± 0.00265 0.86819 ± 0.00221 0.96399 ± 0.00093 0.33538 ± 0.00437 0.73041 ± 0.00378 19,592,315 ± 0.00000 1,226,724,971,052.80005 ± 2,725,978,272,247.06592 3,294.58531 ± 943.89277
REFINED 0.92572 ± 0.00830 0.87069 ± 0.00116 0.86227 ± 0.00112 0.85416 ± 0.00120 0.85076 ± 0.00105 0.86227 ± 0.00112 0.95921 ± 0.00082 0.35667 ± 0.00236 0.71667 ± 0.00202 6,258,761 ± 0.00000 14,030,313,714,328 ± 29,438,466,150,706.24609 5,091.08685 ± 192.75738
DistanceMatrix 0.93294 ± 0.00696 0.87158 ± 0.00231 0.86499 ± 0.00201 0.86004 ± 0.00229 0.85688 ± 0.00247 0.86499 ± 0.00201 0.96225 ± 0.00082 0.33958 ± 0.00148 0.72275 ± 0.00374 15,258,651 ± 0.00000 1,364,578,640,235.19995 ± 3,011,336,350,380.71533 6,505.18565 ± 663.34706
BarGraph 0.94892 ± 0.00686 0.87454 ± 0.00135 0.86663 ± 0.00173 0.86171 ± 0.00198 0.85867 ± 0.00222 0.86663 ± 0.00173 0.96328 ± 0.00055 0.33884 ± 0.00413 0.72670 ± 0.00392 7,939,931 ± 0.00000 440,659,712,818.40002 ± 968,471,046,722.47913 5,125.7472 ± 535.15380
Combination 0.93725 ± 0.00482 0.87318 ± 0.00152 0.86489 ± 0.00139 0.85968 ± 0.00188 0.85646 ± 0.00213 0.86489 ± 0.00139 0.96266 ± 0.00101 0.33884 ± 0.00309 0.72284 ± 0.00315 14,093,339 ± 0.00000 7,161,710,259,286.40039 ± 15,826,396,161,415.5957 6,977.73327 ± 910.96092
SuperTML 0.92000 ± 0.00518 0.86990 ± 0.00179 0.86140 ± 0.00154 0.85271 ± 0.00345 0.84871 ± 0.00379 0.86140 ± 0.00154 0.96065 ± 0.00079 0.34802 ± 0.00327 0.71263 ± 0.00454 17,883,843 ± 0.00000 963,737,054,338.40002 ± 2,126,847,466,896.84741 10,616.86089 ± 2,455.20884
FeatureWrap 0.93592 ± 0.00888 0.87239 ± 0.00134 0.86357 ± 0.00130 0.85749 ± 0.00301 0.85407 ± 0.00360 0.86357 ± 0.00130 0.96204 ± 0.00118 0.34445 ± 0.00416 0.71896 ± 0.00308 2,646,683 ± 0.00000 1,246,668,889,986.3999 ± 2,737,963,693,406.41064 5,269.05582 ± 1,853.4156
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.71220 ± 0.00259 0.69657 ± 0.00198 0.69503 ± 0.00269 0.64016 ± 0.00317 0.65104 ± 0.00801 0.69503 ± 0.00269 0.76540 ± 0.00230 0.71344 ± 0.00330 0.27740 ± 0.00693 133,307 ± 0.00000 13,548,962,240 ± 30,106,367,691.06504 1,148.86206 ± 355.98040
IGTD 0.90703 ± 0.02432 0.85159 ± 0.00558 0.84454 ± 0.00520 0.83759 ± 0.00997 0.83480 ± 0.01118 0.84454 ± 0.00520 0.95032 ± 0.00418 0.39911 ± 0.00688 0.67885 ± 0.01424 3,572,451 ± 0.00000 210,226,552,876.79999 ± 382,063,806,970.60919 1,462.19425 ± 461.35553
REFINED 0.89683 ± 0.01074 0.85354 ± 0.00279 0.84342 ± 0.00310 0.83448 ± 0.00458 0.83022 ± 0.00499 0.84342 ± 0.00310 0.94878 ± 0.00256 0.39481 ± 0.00996 0.67599 ± 0.00773 3,063,971 ± 0.00000 159,951,752,448 ± 283,078,091,946.64594 1,464.93873 ± 470.53684
DistanceMatrix 0.90649 ± 0.02135 0.85256 ± 0.00489 0.84616 ± 0.00208 0.83696 ± 0.00625 0.83460 ± 0.00646 0.84616 ± 0.00208 0.95029 ± 0.00294 0.39819 ± 0.01003 0.68102 ± 0.00752 1,708,867 ± 0.00000 3,491,576,535,427.2002 ± 7,707,901,491,666.37207 4,964.70239 ± 123.36804
BarGraph 0.90792 ± 0.01282 0.85946 ± 0.00354 0.85413 ± 0.00312 0.84797 ± 0.00422 0.84495 ± 0.00413 0.85413 ± 0.00312 0.95584 ± 0.00151 0.37566 ± 0.00614 0.70135 ± 0.00551 1,110,579 ± 0.00000 311,607,712,003.20001 ± 679,867,503,774.60254 4,512.3646 ± 349.22010
Combination 0.90712 ± 0.01527 0.85490 ± 0.00365 0.84616 ± 0.00195 0.84059 ± 0.00398 0.83862 ± 0.00432 0.84616 ± 0.00195 0.95210 ± 0.00160 0.39418 ± 0.00743 0.68624 ± 0.00321 3,359,267 ± 0.00000 3,728,836,729,651.2002 ± 7,992,908,531,108.56445 7,634.51986 ± 404.33011
SuperTML 0.90867 ± 0.00832 0.86392 ± 0.00210 0.85228 ± 0.00144 0.84541 ± 0.00262 0.84210 ± 0.00250 0.85228 ± 0.00144 0.95521 ± 0.00071 0.37773 ± 0.00645 0.69723 ± 0.00308 5,266,899 ± 0.00000 2,141,033,393,254.3999 ± 4,678,190,253,192.8623 7,420.98223 ± 739.91857
FeatureWrap 0.90654 ± 0.01187 0.85410 ± 0.00371 0.85060 ± 0.00232 0.84471 ± 0.00535 0.84197 ± 0.00687 0.85060 ± 0.00232 0.95319 ± 0.00077 0.38091 ± 0.00653 0.69344 ± 0.00718 2,757,747 ± 0.00000 375,817,308,748.79999 ± 829,679,119,080.63367 1,686.67107 ± 572.40545
BIE 0.90377 ± 0.01335 0.85891 ± 0.00386 0.85437 ± 0.00345 0.84537 ± 0.00593 0.84220 ± 0.00583 0.85437 ± 0.00345 0.95548 ± 0.00273 0.37063 ± 0.00619 0.69920 ± 0.00932 1,606,067 ± 0.00000 1,189,191,183,379.19995 ± 2,597,463,716,358.88281 4,724.28435 ± 433.84260
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.89611 ± 0.00795 0.85686 ± 0.00275 0.84997 ± 0.00207 0.83822 ± 0.00473 0.83459 ± 0.00466 0.84997 ± 0.00207 0.95321 ± 0.00126 0.37265 ± 0.00327 0.68654 ± 0.00690 378,283 ± 0.00000 11,118,993,590.4 ± 24,616,967,503.58926 1,352.04697 ± 421.20323
IGTD 0.89933 ± 0.01484 0.84849 ± 0.00475 0.84190 ± 0.00583 0.83342 ± 0.00745 0.82935 ± 0.00783 0.84190 ± 0.00583 0.94754 ± 0.00211 0.40304 ± 0.00608 0.67222 ± 0.01395 3,675,971 ± 0.00000 208,189,100,467.20001 ± 461,916,824,304.87598 1,643.26583 ± 530.95584
REFINED 0.91310 ± 0.01035 0.84983 ± 0.00300 0.84440 ± 0.00274 0.83628 ± 0.00393 0.83282 ± 0.00401 0.84440 ± 0.00274 0.94989 ± 0.00070 0.39970 ± 0.01150 0.67935 ± 0.00697 3,128,355 ± 0.00000 175,697,881,356.79999 ± 389,773,617,625.3717 1,751.01563 ± 586.83492
DistanceMatrix 0.88316 ± 0.00763 0.85340 ± 0.00248 0.84664 ± 0.00431 0.83343 ± 0.00459 0.83062 ± 0.00448 0.84664 ± 0.00431 0.94989 ± 0.00090 0.39532 ± 0.01196 0.68039 ± 0.01146 1,723,971 ± 0.00000 5,095,256,195,558.40039 ± 11,211,795,084,795.75391 5,155.71169 ± 232.70114
BarGraph 0.89839 ± 0.01132 0.86067 ± 0.00470 0.85382 ± 0.00278 0.84488 ± 0.00467 0.84167 ± 0.00373 0.85382 ± 0.00278 0.95566 ± 0.00225 0.37123 ± 0.00794 0.69766 ± 0.00579 1,163,859 ± 0.00000 519,475,749,942.40002 ± 1,139,923,846,571.62622 4,804.959 ± 449.91699
Combination 0.89388 ± 0.00351 0.85254 ± 0.00228 0.84843 ± 0.00255 0.83873 ± 0.00320 0.83518 ± 0.00400 0.84843 ± 0.00255 0.95196 ± 0.00089 0.38681 ± 0.00683 0.68724 ± 0.00706 2,971,939 ± 0.00000 15,843,091,900,857.59961 ± 34,910,752,920,593.26172 7,442.73934 ± 63.86921
SuperTML 0.89551 ± 0.00672 0.86323 ± 0.00234 0.85281 ± 0.00075 0.84373 ± 0.00471 0.84058 ± 0.00417 0.85281 ± 0.00075 0.95540 ± 0.00103 0.36847 ± 0.00559 0.69559 ± 0.00266 5,463,507 ± 0.00000 5,610,715,454,259.2002 ± 12,342,820,772,949.64648 7,634.20695 ± 750.53481
FeatureWrap 0.90022 ± 0.01044 0.85828 ± 0.00255 0.85222 ± 0.00345 0.84230 ± 0.00557 0.83890 ± 0.00589 0.85222 ± 0.00345 0.95344 ± 0.00089 0.38222 ± 0.00544 0.69375 ± 0.00994 2,881,203 ± 0.00000 661,479,649,996.80005 ± 1,253,726,830,906.76416 2,375.2474 ± 866.19194
BIE 0.89989 ± 0.00965 0.86069 ± 0.00232 0.85295 ± 0.00430 0.84680 ± 0.00407 0.84559 ± 0.00428 0.85295 ± 0.00430 0.95687 ± 0.00223 0.37188 ± 0.00807 0.70102 ± 0.00779 1,730,419 ± 0.00000 170,941,288,227.20001 ± 374,187,299,306.86566 4,251.9051 ± 227.82844

Covtype

Source: UCI Covertype / OpenML

Leaderboard

Family Best variant Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
ViT+MLP REFINED 0.97050 ± 0.00000 0.97051 ± 0.00000 4491.06401 ± 0.00000
CNN Combination 0.96485 ± 0.00000 0.96487 ± 0.00000 4482.55339 ± 0.00000
MLP MLP 0.96310 ± 0.00000 0.96312 ± 0.00000 2870.39325 ± 0.00000
CNN+MLP REFINED 0.96289 ± 0.00000 0.96284 ± 0.00000 1832.13226 ± 0.00000
ViT DistanceMatrix 0.96078 ± 0.00000 0.96075 ± 0.00000 7455.48702 ± 0.00000
Architecture Results
MLP
Method Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
MLP 0.96310 ± 0.00000 0.96312 ± 0.00000 2870.39325 ± 0.00000
ViT
Method Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
TINTO 0.95210 ± 0.00000 0.95211 ± 0.00000 3717.71217 ± 0.00000
IGTD 0.93557 ± 0.00000 0.93560 ± 0.00000 4028.44666 ± 0.00000
REFINED 0.94441 ± 0.00000 0.94441 ± 0.00000 3636.44167 ± 0.00000
BarGraph 0.95900 ± 0.00000 0.95899 ± 0.00000 3740.85926 ± 0.00000
FeatureWrap 0.94988 ± 0.00000 0.94983 ± 0.00000 3783.60048 ± 0.00000
Combination 0.94756 ± 0.00000 0.94756 ± 0.00000 3769.21102 ± 0.00000
DistanceMatrix 0.96078 ± 0.00000 0.96075 ± 0.00000 7455.48702 ± 0.00000
ViT + MLP
Method Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
TINTO 0.95972 ± 0.00000 0.95972 ± 0.00000 4179.14185 ± 0.00000
IGTD 0.96671 ± 0.00000 0.96671 ± 0.00000 4298.49003 ± 0.00000
REFINED 0.97050 ± 0.00000 0.97051 ± 0.00000 4491.06401 ± 0.00000
BarGraph 0.95683 ± 0.00000 0.95682 ± 0.00000 4305.19298 ± 0.00000
FeatureWrap 0.95517 ± 0.00000 0.95518 ± 0.00000 4388.84096 ± 0.00000
Combination 0.95903 ± 0.00000 0.95903 ± 0.00000 4331.18001 ± 0.00000
DistanceMatrix 0.96499 ± 0.00000 0.96499 ± 0.00000 4372.84549 ± 0.00000
CNN
Method Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
TINTO 0.95707 ± 0.00000 0.95707 ± 0.00000 4064.05686 ± 0.00000
IGTD 0.95949 ± 0.00000 0.95949 ± 0.00000 4029.40301 ± 0.00000
REFINED 0.96206 ± 0.00000 0.96207 ± 0.00000 4004.55836 ± 0.00000
BarGraph 0.96467 ± 0.00000 0.96467 ± 0.00000 3929.04679 ± 0.00000
FeatureWrap 0.94784 ± 0.00000 0.94780 ± 0.00000 3922.66296 ± 0.00000
Combination 0.96485 ± 0.00000 0.96487 ± 0.00000 4482.55339 ± 0.00000
DistanceMatrix 0.95455 ± 0.00000 0.95455 ± 0.00000 4027.21556 ± 0.00000
BIE 0.95304 ± 0.00000 0.95301 ± 0.00000 3952.53097 ± 0.00000
CNN + MLP
Method Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
TINTO 0.95034 ± 0.00000 0.95032 ± 0.00000 1772.66925 ± 0.00000
IGTD 0.94519 ± 0.00000 0.94519 ± 0.00000 1722.16181 ± 0.00000
REFINED 0.96289 ± 0.00000 0.96284 ± 0.00000 1832.13226 ± 0.00000
BarGraph 0.93826 ± 0.00000 0.93826 ± 0.00000 1745.82248 ± 0.00000
FeatureWrap 0.94837 ± 0.00000 0.94836 ± 0.00000 1655.45252 ± 0.00000
Combination 0.94017 ± 0.00000 0.94018 ± 0.00000 1712.62713 ± 0.00000
DistanceMatrix 0.96089 ± 0.00000 0.96089 ± 0.00000 1734.12690 ± 0.00000
BIE 0.90212 ± 0.00000 0.90207 ± 0.00000 1684.29330 ± 0.00000

Dna

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees LightGBM 0.96904 ± 0.00229 0.96586 ± 0.00223 0.83394 ± 0.08025
MLP MLP 0.95900 ± 0.00919 0.95908 ± 0.00924 17.34056 ± 0.04865 125,699 ± 0.00000 251,008 ± 0.00000
ViT IGTD 0.96276 ± 0.00716 0.96270 ± 0.00716 288.60882 ± 6.51746 20,028,443 ± 0.00000 3,916,903,412 ± 0.00000
ViT+MLP IGTD 0.96569 ± 0.00482 0.96579 ± 0.00484 296.84681 ± 1.41752 19,147,355 ± 0.00000 73,330,566,120 ± 6,441,433,640.24378
CNN REFINED 0.94686 ± 0.01423 0.94686 ± 0.01444 79.57766 ± 4.85588 1,364,507 ± 0.00000 155,817,264 ± 0.00000
CNN+MLP FeatureWrap 0.94812 ± 0.00581 0.94823 ± 0.00591 51.14995 ± 2.83025 2,817,195 ± 0.00000 403,004,000 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Train time (s) #Params FLOPs
CatBoost 0.99955 ± 0.00000 0.97155 ± 0.00238 0.96653 ± 0.00148 0.96349 ± 0.00178 0.95981 ± 0.00158 0.96761 ± 0.00205 4.20438 ± 0.08675
LightGBM 0.99910 ± 0.00000 0.97280 ± 0.00209 0.96904 ± 0.00229 0.96586 ± 0.00223 0.96290 ± 0.00285 0.96923 ± 0.00147 0.83394 ± 0.08025
XGBoost 0.99955 ± 0.00000 0.96946 ± 0.00350 0.96778 ± 0.00317 0.96469 ± 0.00376 0.96042 ± 0.00381 0.96966 ± 0.00389 2.38268 ± 0.05833
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.98655 ± 0.00678 0.96234 ± 0.00936 0.95900 ± 0.00919 0.95908 ± 0.00924 0.95966 ± 0.00902 0.95900 ± 0.00919 0.99520 ± 0.00088 0.12762 ± 0.01930 0.93382 ± 0.01495 125,699 ± 0.00000 251,008 ± 0.00000 17.34056 ± 0.04865
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.94386 ± 0.01146 0.92008 ± 0.00880 0.91716 ± 0.00688 0.91752 ± 0.00719 0.91880 ± 0.00762 0.91716 ± 0.00688 0.98487 ± 0.00164 0.22577 ± 0.01743 0.86639 ± 0.01171 6,476,985 ± 0.00000 217,466,360 ± 0.00000 87.84516 ± 0.66980
IGTD 0.98834 ± 0.00603 0.96402 ± 0.00760 0.96276 ± 0.00716 0.96270 ± 0.00716 0.96286 ± 0.00708 0.96276 ± 0.00716 0.99547 ± 0.00114 0.13422 ± 0.02999 0.93947 ± 0.01162 20,028,443 ± 0.00000 3,916,903,412 ± 0.00000 288.60882 ± 6.51746
REFINED 0.98395 ± 0.00394 0.96695 ± 0.00477 0.95481 ± 0.00545 0.95494 ± 0.00543 0.95543 ± 0.00526 0.95481 ± 0.00545 0.99211 ± 0.00159 0.14318 ± 0.01237 0.92712 ± 0.00863 7,690,243 ± 0.00000 403,679,040 ± 0.00000 201.60364 ± 25.39346
FeatureWrap 0.97300 ± 0.00985 0.95481 ± 0.00845 0.95607 ± 0.00769 0.95602 ± 0.00779 0.95627 ± 0.00769 0.95607 ± 0.00769 0.99324 ± 0.00119 0.14132 ± 0.01830 0.92891 ± 0.01242 3,159,771 ± 0.00000 1,057,233,840 ± 0.00000 121.53474 ± 1.87864
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.98475 ± 0.01014 0.96736 ± 0.00482 0.95941 ± 0.00317 0.95947 ± 0.00319 0.95972 ± 0.00328 0.95941 ± 0.00317 0.99300 ± 0.00060 0.13922 ± 0.00394 0.93437 ± 0.00525 6,584,217 ± 0.00000 2,153,332,160 ± 425,589,636.53063 118.35021 ± 1.94925
IGTD 0.99004 ± 0.00588 0.96611 ± 0.00273 0.96569 ± 0.00482 0.96579 ± 0.00484 0.96613 ± 0.00494 0.96569 ± 0.00482 0.99354 ± 0.00115 0.14215 ± 0.02601 0.94442 ± 0.00788 19,147,355 ± 0.00000 73,330,566,120 ± 6,441,433,640.24378 296.84681 ± 1.41752
REFINED 0.98170 ± 0.00484 0.96234 ± 0.00512 0.95481 ± 0.00281 0.95489 ± 0.00282 0.95544 ± 0.00277 0.95481 ± 0.00281 0.99164 ± 0.00130 0.16187 ± 0.01319 0.92705 ± 0.00455 7,810,659 ± 0.00000 3,738,010,240 ± 738,789,142.21454 222.49335 ± 4.77872
FeatureWrap 0.98735 ± 0.00753 0.96444 ± 0.00331 0.96276 ± 0.00541 0.96284 ± 0.00540 0.96315 ± 0.00529 0.96276 ± 0.00541 0.99460 ± 0.00078 0.12526 ± 0.01582 0.93986 ± 0.00862 3,255,611 ± 0.00000 19,644,640,128 ± 1,725,605,739.41171 136.39478 ± 4.12009
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.98924 ± 0.00609 0.92929 ± 0.00855 0.91590 ± 0.00541 0.91597 ± 0.00567 0.91649 ± 0.00601 0.91590 ± 0.00541 0.98324 ± 0.00229 0.24036 ± 0.00774 0.86376 ± 0.00940 5,670,235 ± 0.00000 532,993,344 ± 0.00000 69.24992 ± 2.75125
IGTD 0.99534 ± 0.00345 0.94561 ± 0.00709 0.93264 ± 0.00829 0.93242 ± 0.00847 0.93302 ± 0.00852 0.93264 ± 0.00829 0.98925 ± 0.00470 0.23842 ± 0.06370 0.89060 ± 0.01387 3,382,019 ± 0.00000 312,868,128 ± 0.00000 52.91997 ± 1.50567
REFINED 0.99552 ± 0.00597 0.94979 ± 0.01097 0.94686 ± 0.01423 0.94686 ± 0.01444 0.94714 ± 0.01436 0.94686 ± 0.01423 0.99071 ± 0.00272 0.20894 ± 0.01598 0.91375 ± 0.02348 1,364,507 ± 0.00000 155,817,264 ± 0.00000 79.57766 ± 4.85588
FeatureWrap 0.98413 ± 0.02596 0.94519 ± 0.02964 0.93347 ± 0.02908 0.93390 ± 0.02835 0.93578 ± 0.02526 0.93347 ± 0.02908 0.98649 ± 0.00910 0.26083 ± 0.05225 0.89384 ± 0.04392 2,676,523 ± 0.00000 402,723,072 ± 0.00000 41.64876 ± 0.55029
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.98206 ± 0.00827 0.95816 ± 0.00491 0.94603 ± 0.01121 0.94591 ± 0.01130 0.94680 ± 0.01035 0.94603 ± 0.01121 0.99321 ± 0.00149 0.16841 ± 0.02508 0.91261 ± 0.01786 5,569,563 ± 0.00000 532,792,224 ± 0.00000 72.98984 ± 1.24142
IGTD 0.99937 ± 0.00040 0.95398 ± 0.00754 0.94812 ± 0.00229 0.94815 ± 0.00223 0.94840 ± 0.00199 0.94812 ± 0.00229 0.99275 ± 0.00147 0.18653 ± 0.01943 0.91590 ± 0.00341 3,507,715 ± 0.00000 313,119,136 ± 0.00000 58.24372 ± 1.41547
REFINED 0.99713 ± 0.00108 0.95105 ± 0.01031 0.93807 ± 0.00832 0.93811 ± 0.00845 0.93929 ± 0.00898 0.93807 ± 0.00832 0.98941 ± 0.00117 0.21958 ± 0.02508 0.90001 ± 0.01415 1,490,203 ± 0.00000 156,068,272 ± 0.00000 75.13162 ± 3.41050
FeatureWrap 0.99596 ± 0.00394 0.94895 ± 0.00671 0.94812 ± 0.00581 0.94823 ± 0.00591 0.94874 ± 0.00614 0.94812 ± 0.00581 0.99045 ± 0.00118 0.22568 ± 0.03002 0.91610 ± 0.00977 2,817,195 ± 0.00000 403,004,000 ± 0.00000 51.14995 ± 2.83025

Gas

Source: UCI · OpenML

Leaderboard

Family Best variant Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees CatBoost 0.99482 ± 0.00021 0.99480 ± 0.00026 36.80809 ± 0.25908
MLP MLP 0.99023 ± 0.00055 0.99023 ± 0.00055 46.54599 ± 0.11946 198,918 ± 0.00000 397,056 ± 0.00000
ViT REFINED 0.99425 ± 0.00176 0.99425 ± 0.00176 138.15323 ± 3.43411 3,467,982 ± 0.00000 252,901,890 ± 0.00000
ViT+MLP DistanceMatrix 0.99291 ± 0.00109 0.99291 ± 0.00110 552.69914 ± 30.75840 11,757,862 ± 0.00000 3,821,865,312 ± 755,362,456.01938
CNN REFINED 0.99559 ± 0.00092 0.99559 ± 0.00092 106.43015 ± 0.47909 263,238 ± 0.00000 8,991,024 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Train time (s) #Params FLOPs
CatBoost 1.00000 ± 0.00000 0.99703 ± 0.00021 0.99482 ± 0.00021 0.99480 ± 0.00026 0.99544 ± 0.00025 0.99419 ± 0.00027 36.80809 ± 0.25908
LightGBM 1.00000 ± 0.00000 0.99684 ± 0.00026 0.99339 ± 0.00079 0.99345 ± 0.00076 0.99405 ± 0.00082 0.99287 ± 0.00071 4.49590 ± 0.15569
XGBoost 1.00000 ± 0.00000 0.99664 ± 0.00000 0.99435 ± 0.00021 0.99444 ± 0.00022 0.99501 ± 0.00023 0.99388 ± 0.00025 5.76104 ± 0.04317
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.99649 ± 0.00086 0.99492 ± 0.00064 0.99023 ± 0.00055 0.99023 ± 0.00055 0.99027 ± 0.00056 0.99023 ± 0.00055 0.99748 ± 0.00034 0.06793 ± 0.00848 0.98815 ± 0.00066 198,918 ± 0.00000 397,056 ± 0.00000 46.54599 ± 0.11946
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.99741 ± 0.00118 0.99434 ± 0.00133 0.99061 ± 0.00199 0.99061 ± 0.00199 0.99065 ± 0.00200 0.99061 ± 0.00199 0.99956 ± 0.00014 0.04212 ± 0.00671 0.98861 ± 0.00242 5,737,950 ± 0.00000 54,820,530 ± 0.00000 182.82055 ± 41.48864
IGTD 0.99914 ± 0.00072 0.99616 ± 0.00034 0.65424 ± 0.01442 0.64211 ± 0.01677 0.68921 ± 0.02778 0.65424 ± 0.01442 0.91613 ± 0.01030 1.82867 ± 0.25459 0.59116 ± 0.02123 11,447,886 ± 0.00000 862,030,152 ± 0.00000 363.89538 ± 0.51325
REFINED 0.99756 ± 0.00119 0.99722 ± 0.00086 0.99425 ± 0.00176 0.99425 ± 0.00176 0.99426 ± 0.00176 0.99425 ± 0.00176 0.99983 ± 0.00010 0.02459 ± 0.00371 0.99303 ± 0.00214 3,467,982 ± 0.00000 252,901,890 ± 0.00000 138.15323 ± 3.43411
DistanceMatrix 0.99813 ± 0.00083 0.99722 ± 0.00092 0.99252 ± 0.00129 0.99252 ± 0.00130 0.99255 ± 0.00130 0.99252 ± 0.00129 0.99980 ± 0.00008 0.03687 ± 0.00308 0.99094 ± 0.00157 11,474,022 ± 0.00000 391,095,820 ± 0.00000 421.74331 ± 10.55267
BarGraph 0.99852 ± 0.00025 0.99616 ± 0.00034 0.99224 ± 0.00137 0.99224 ± 0.00137 0.99228 ± 0.00138 0.99224 ± 0.00137 0.99951 ± 0.00017 0.03886 ± 0.00613 0.99059 ± 0.00167 1,735,910 ± 0.00000 59,010,255 ± 0.00000 195.19845 ± 4.07837
Combination 0.99834 ± 0.00065 0.99626 ± 0.00040 0.99272 ± 0.00052 0.99272 ± 0.00052 0.99276 ± 0.00052 0.99272 ± 0.00052 0.99953 ± 0.00027 0.03742 ± 0.00465 0.99117 ± 0.00064 14,435,142 ± 0.00000 482,492,376 ± 0.00000 462.68637 ± 10.41090
SuperTML 0.99943 ± 0.00112 0.99214 ± 0.00110 0.98562 ± 0.00232 0.98564 ± 0.00232 0.98572 ± 0.00232 0.98562 ± 0.00232 0.99860 ± 0.00046 0.09438 ± 0.00864 0.98257 ± 0.00282 21,510,150 ± 0.00000 9,067,504,704 ± 0.00000 2,897.46299 ± 27.53749
FeatureWrap 0.81035 ± 0.07579 0.59712 ± 0.05523 0.59655 ± 0.06369 0.58378 ± 0.07979 0.63992 ± 0.09459 0.59655 ± 0.06369 0.87598 ± 0.03935 1.24476 ± 0.19879 0.52546 ± 0.08155 3,983,148 ± 0.00000 39,824,176 ± 0.00000 327.32415 ± 2.58176
BIE 0.99998 ± 0.00005 0.99453 ± 0.00055 0.98630 ± 0.00218 0.98629 ± 0.00219 0.98634 ± 0.00219 0.98630 ± 0.00218 0.99859 ± 0.00018 0.08844 ± 0.01330 0.98338 ± 0.00265 34,724,502 ± 0.00000 4,566,851,280 ± 0.00000 1,448.67827 ± 2.37018
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.99714 ± 0.00136 0.99482 ± 0.00171 0.99090 ± 0.00096 0.99090 ± 0.00096 0.99093 ± 0.00096 0.99090 ± 0.00096 0.99929 ± 0.00023 0.04582 ± 0.00691 0.98896 ± 0.00116 5,870,302 ± 0.00000 779,343,120 ± 154,031,208.62387 180.41575 ± 7.10909
IGTD 0.99869 ± 0.00057 0.99597 ± 0.00087 0.70321 ± 0.00904 0.69452 ± 0.01129 0.71298 ± 0.01420 0.70321 ± 0.00904 0.93515 ± 0.00801 1.53880 ± 0.19012 0.64465 ± 0.00909 11,555,966 ± 0.00000 7,666,723,008 ± 1,515,269,180.93108 430.32818 ± 3.91669
REFINED 0.99708 ± 0.00118 0.99645 ± 0.00105 0.99281 ± 0.00131 0.99281 ± 0.00131 0.99284 ± 0.00131 0.99281 ± 0.00131 0.99982 ± 0.00010 0.03157 ± 0.00640 0.99128 ± 0.00159 3,822,910 ± 0.00000 5,059,519,524 ± 444,433,487.83141 192.69938 ± 12.95578
DistanceMatrix 0.99803 ± 0.00059 0.99741 ± 0.00055 0.99291 ± 0.00109 0.99291 ± 0.00110 0.99293 ± 0.00109 0.99291 ± 0.00109 0.99928 ± 0.00026 0.04195 ± 0.00326 0.99140 ± 0.00133 11,757,862 ± 0.00000 3,821,865,312 ± 755,362,456.01938 552.69914 ± 30.75840
BarGraph 0.99817 ± 0.00046 0.99626 ± 0.00098 0.99128 ± 0.00114 0.99128 ± 0.00114 0.99133 ± 0.00114 0.99128 ± 0.00114 0.99919 ± 0.00044 0.04655 ± 0.01206 0.98943 ± 0.00139 1,961,926 ± 0.00000 558,790,072 ± 110,440,585.08809 240.12472 ± 12.82240
Combination 0.99764 ± 0.00051 0.99664 ± 0.00034 0.99281 ± 0.00096 0.99281 ± 0.00096 0.99285 ± 0.00097 0.99281 ± 0.00096 0.99971 ± 0.00014 0.03550 ± 0.00279 0.99129 ± 0.00117 14,742,406 ± 0.00000 4,699,479,744 ± 928,816,238.05406 572.58901 ± 23.88611
SuperTML 0.99688 ± 0.00027 0.99482 ± 0.00063 0.99080 ± 0.00052 0.99080 ± 0.00053 0.99084 ± 0.00053 0.99080 ± 0.00052 0.99759 ± 0.00010 0.06655 ± 0.00271 0.98884 ± 0.00064 21,711,110 ± 0.00000 74,096,585,216 ± 14,644,623,507.70746 2,891.24381 ± 57.72719
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.99873 ± 0.00104 0.99607 ± 0.00092 0.99214 ± 0.00115 0.99214 ± 0.00115 0.99216 ± 0.00114 0.99214 ± 0.00115 0.99992 ± 0.00003 0.02851 ± 0.00273 0.99047 ± 0.00140 1,619,470 ± 0.00000 171,610,944 ± 0.00000 136.59140 ± 2.88332
IGTD 0.99788 ± 0.00101 0.98888 ± 0.00380 0.17010 ± 0.04243 0.05139 ± 0.02348 0.06725 ± 0.07757 0.17010 ± 0.04243 0.57662 ± 0.04208 3.08575 ± 1.31520 0.00262 ± 0.00768 3,636,422 ± 0.00000 150,166,224 ± 0.00000 122.98220 ± 1.10191
REFINED 0.99940 ± 0.00034 0.99731 ± 0.00026 0.99559 ± 0.00092 0.99559 ± 0.00092 0.99560 ± 0.00092 0.99559 ± 0.00092 0.99999 ± 0.00001 0.01392 ± 0.00281 0.99465 ± 0.00112 263,238 ± 0.00000 8,991,024 ± 0.00000 106.43015 ± 0.47909
DistanceMatrix 0.99912 ± 0.00030 0.99712 ± 0.00059 0.99444 ± 0.00093 0.99444 ± 0.00093 0.99447 ± 0.00093 0.99444 ± 0.00093 0.99981 ± 0.00019 0.02764 ± 0.00898 0.99326 ± 0.00113 288,438 ± 0.00000 36,890,464 ± 0.00000 225.64282 ± 6.66273
BarGraph 0.99908 ± 0.00057 0.99626 ± 0.00141 0.99224 ± 0.00164 0.99224 ± 0.00164 0.99227 ± 0.00163 0.99224 ± 0.00164 0.99941 ± 0.00021 0.04300 ± 0.00658 0.99059 ± 0.00199 203,198 ± 0.00000 109,102,288 ± 0.00000 206.07859 ± 2.82049
Combination 0.99895 ± 0.00071 0.99703 ± 0.00052 0.99377 ± 0.00203 0.99377 ± 0.00203 0.99381 ± 0.00201 0.99377 ± 0.00203 0.99979 ± 0.00012 0.02849 ± 0.00648 0.99245 ± 0.00246 135,822 ± 0.00000 101,826,752 ± 0.00000 202.90694 ± 4.58884
SuperTML 0.99867 ± 0.00145 0.99444 ± 0.00110 0.98860 ± 0.00210 0.98860 ± 0.00210 0.98869 ± 0.00208 0.98860 ± 0.00210 0.99915 ± 0.00014 0.06455 ± 0.01081 0.98618 ± 0.00254 1,360,406 ± 0.00000 505,178,176 ± 0.00000 526.23909 ± 24.16208
FeatureWrap 0.86423 ± 0.06309 0.53960 ± 0.04474 0.62741 ± 0.03281 0.63051 ± 0.02636 0.71772 ± 0.03312 0.62741 ± 0.03281 0.89263 ± 0.01529 1.20806 ± 0.18070 0.57339 ± 0.03365 2,443,174 ± 0.00000 135,307,296 ± 0.00000 161.80681 ± 3.03091

Isolet

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees XGBoost 0.96222 ± 0.00316 0.96221 ± 0.00314 168.39582 ± 4.28198
MLP MLP 0.95829 ± 0.00412 0.95833 ± 0.00407 26.72631 ± 0.56690 454,426 ± 0.00000 908,032 ± 0.00000
ViT REFINED 0.96376 ± 0.00268 0.96371 ± 0.00267 279.52203 ± 34.80752 10,017,680 ± 0.00000 529,073,367 ± 0.00000
ViT+MLP REFINED 0.96051 ± 0.00706 0.96053 ± 0.00700 302.87938 ± 8.28478 10,532,176 ± 0.00000 4,902,711,480 ± 968,983,436.71594
CNN IGTD 0.95897 ± 0.00423 0.95912 ± 0.00421 227.41112 ± 0.34707 11,012,890 ± 0.00000 824,791,872 ± 0.00000
CNN+MLP IGTD 0.96188 ± 0.00536 0.96185 ± 0.00537 237.21687 ± 0.68981 11,507,930 ± 0.00000 825,781,120 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Train time (s) #Params FLOPs
XGBoost 1.00000 ± 0.00000 0.96752 ± 0.00283 0.96222 ± 0.00316 0.96221 ± 0.00314 0.96323 ± 0.00310 0.96222 ± 0.00316 168.39582 ± 4.28198
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.99399 ± 0.00389 0.95915 ± 0.00525 0.95829 ± 0.00412 0.95833 ± 0.00407 0.95976 ± 0.00380 0.95829 ± 0.00412 0.99924 ± 0.00012 0.15922 ± 0.00899 0.95668 ± 0.00427 454,426 ± 0.00000 908,032 ± 0.00000 26.72631 ± 0.56690
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.98142 ± 0.00843 0.92325 ± 0.00615 0.92684 ± 0.00732 0.92656 ± 0.00751 0.92888 ± 0.00680 0.92684 ± 0.00732 0.99872 ± 0.00009 0.23731 ± 0.01226 0.92402 ± 0.00757 1,802,354 ± 0.00000 18,282,472 ± 0.00000 216.46732 ± 29.10459
IGTD 0.99436 ± 0.01086 0.95983 ± 0.01320 0.94479 ± 0.01697 0.94449 ± 0.01731 0.94693 ± 0.01466 0.94479 ± 0.01697 0.99914 ± 0.00035 0.23000 ± 0.03803 0.94269 ± 0.01753 9,077,296 ± 0.00000 456,306,955 ± 0.00000 243.64260 ± 26.39967
REFINED 0.99993 ± 0.00016 0.96615 ± 0.00470 0.96376 ± 0.00268 0.96371 ± 0.00267 0.96497 ± 0.00247 0.96376 ± 0.00268 0.99923 ± 0.00023 0.15980 ± 0.01716 0.96236 ± 0.00278 10,017,680 ± 0.00000 529,073,367 ± 0.00000 279.52203 ± 34.80752
SuperTML 1.00000 ± 0.00000 0.85795 ± 0.01258 0.84427 ± 0.01152 0.84332 ± 0.01124 0.84561 ± 0.01052 0.84427 ± 0.01152 0.99221 ± 0.00109 0.50840 ± 0.03374 0.83818 ± 0.01196 10,036,794 ± 0.00000 83,538,992 ± 0.00000 262.63460 ± 2.58628
FeatureWrap 0.99780 ± 0.00206 0.91846 ± 0.00511 0.90821 ± 0.01090 0.90736 ± 0.01170 0.90953 ± 0.01088 0.90821 ± 0.01090 0.99672 ± 0.00049 0.31558 ± 0.01919 0.90465 ± 0.01128 14,200,242 ± 0.00000 142,015,880 ± 0.00000 351.11808 ± 15.76725
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.98889 ± 0.00369 0.94974 ± 0.00746 0.94479 ± 0.00609 0.94468 ± 0.00606 0.94574 ± 0.00563 0.94479 ± 0.00609 0.99864 ± 0.00042 0.21929 ± 0.03245 0.94263 ± 0.00632 2,303,090 ± 0.00000 272,973,120 ± 53,951,049.95015 278.14390 ± 7.19155
IGTD 0.99645 ± 0.00229 0.95607 ± 0.00215 0.94359 ± 0.00218 0.94356 ± 0.00198 0.94632 ± 0.00289 0.94359 ± 0.00218 0.99915 ± 0.00014 0.20866 ± 0.02095 0.94145 ± 0.00230 9,540,848 ± 0.00000 9,491,839,110 ± 833,773,076.98515 279.28474 ± 16.77670
REFINED 0.99802 ± 0.00226 0.96051 ± 0.00571 0.96051 ± 0.00706 0.96053 ± 0.00700 0.96178 ± 0.00674 0.96051 ± 0.00706 0.99942 ± 0.00002 0.16082 ± 0.01207 0.95898 ± 0.00733 10,532,176 ± 0.00000 4,902,711,480 ± 968,983,436.71594 302.87938 ± 8.28478
SuperTML 0.98384 ± 0.01251 0.94838 ± 0.01263 0.94376 ± 0.02125 0.94367 ± 0.02136 0.94594 ± 0.01920 0.94376 ± 0.02125 0.99904 ± 0.00038 0.19208 ± 0.04362 0.94161 ± 0.02200 10,609,402 ± 0.00000 1,743,066,720 ± 153,112,804.13442 289.08523 ± 3.50653
FeatureWrap 0.98252 ± 0.00567 0.94701 ± 0.00973 0.94701 ± 0.00880 0.94707 ± 0.00874 0.94868 ± 0.00794 0.94701 ± 0.00880 0.99886 ± 0.00033 0.19788 ± 0.02461 0.94495 ± 0.00912 14,660,242 ± 0.00000 2,048,710,208 ± 404,911,907.68233 372.53602 ± 17.60092
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.99978 ± 0.00049 0.93231 ± 0.00140 0.93504 ± 0.00831 0.93506 ± 0.00835 0.93696 ± 0.00798 0.93504 ± 0.00831 0.99878 ± 0.00026 0.20936 ± 0.01879 0.93252 ± 0.00863 1,552,738 ± 0.00000 64,476,192 ± 0.00000 91.40022 ± 4.36537
IGTD 1.00000 ± 0.00000 0.94051 ± 0.00532 0.95897 ± 0.00423 0.95912 ± 0.00421 0.96171 ± 0.00367 0.95897 ± 0.00423 0.99937 ± 0.00016 0.14785 ± 0.00747 0.95744 ± 0.00437 11,012,890 ± 0.00000 824,791,872 ± 0.00000 227.41112 ± 0.34707
REFINED 0.99985 ± 0.00033 0.96000 ± 0.00429 0.95590 ± 0.00522 0.95576 ± 0.00525 0.95741 ± 0.00471 0.95590 ± 0.00522 0.99921 ± 0.00013 0.16478 ± 0.01589 0.95420 ± 0.00541 9,491,778 ± 0.00000 1,668,365,064 ± 0.00000 271.27100 ± 1.03411
FeatureWrap 1.00000 ± 0.00000 0.93966 ± 0.00644 0.94188 ± 0.00234 0.94182 ± 0.00234 0.94313 ± 0.00201 0.94188 ± 0.00234 0.99876 ± 0.00019 0.24086 ± 0.01758 0.93961 ± 0.00242 6,179,626 ± 0.00000 1,341,694,848 ± 0.00000 222.70396 ± 0.22781
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.99993 ± 0.00016 0.93368 ± 0.00455 0.94342 ± 0.00830 0.94358 ± 0.00827 0.94552 ± 0.00767 0.94342 ± 0.00830 0.99906 ± 0.00016 0.17505 ± 0.01858 0.94123 ± 0.00860 2,007,138 ± 0.00000 719,226,464 ± 0.00000 120.77254 ± 3.81571
IGTD 1.00000 ± 0.00000 0.94820 ± 0.00754 0.96188 ± 0.00536 0.96185 ± 0.00537 0.96361 ± 0.00474 0.96188 ± 0.00536 0.99952 ± 0.00012 0.13588 ± 0.01922 0.96043 ± 0.00555 11,507,930 ± 0.00000 825,781,120 ± 0.00000 237.21687 ± 0.68981
REFINED 0.99982 ± 0.00032 0.95470 ± 0.00347 0.94735 ± 0.01016 0.94738 ± 0.01003 0.94914 ± 0.00890 0.94735 ± 0.01016 0.99862 ± 0.00057 0.22555 ± 0.04630 0.94532 ± 0.01052 10,021,506 ± 0.00000 1,669,423,560 ± 0.00000 285.32846 ± 1.41554
FeatureWrap 0.99985 ± 0.00020 0.93402 ± 0.00711 0.93060 ± 0.01016 0.93051 ± 0.01012 0.93246 ± 0.00938 0.93060 ± 0.01016 0.99841 ± 0.00035 0.30922 ± 0.04104 0.92791 ± 0.01053 6,660,074 ± 0.00000 1,342,654,912 ± 0.00000 249.84972 ± 0.92565

Mfeat-fourier

Source: OpenML · UCI

Leaderboard

Family Best variant Test Accuracy (↑) Train time (s) #Params FLOPs
Trees CatBoost 0.858667 ± 0.009603
MLP MLP 0.820000 ± 0.012247
ViT TINTO_blur 0.870000 ± 0.016997
ViT+MLP TINTO_blur 0.866667 ± 0.014720
CNN TINTO_blur 0.864667 ± 0.007674
CNN+MLP TINTO_blur 0.844667 ± 0.021422
Architecture Results
Tree Baselines
Method Test Accuracy (↑)
XGBoost 0.842000 ± 0.009603
CatBoost 0.858667 ± 0.009603
LightGBM 0.857333 ± 0.010382
MLP
Test Accuracy (↑)
0.820000 ± 0.012247
ViT
Method Test Accuracy (↑)
TINTO_blur 0.870000 ± 0.016997
IGTD 0.831333 ± 0.013038
REFINED 0.807333 ± 0.013622
DistanceMatrix 0.821333 ± 0.022186
BarGraph 0.825333 ± 0.018348
Combination 0.836000 ± 0.017857
SuperTML 0.742667 ± 0.018166
FeatureWrap 0.674667 ± 0.022925
BIE 0.678000 ± 0.021029
ViT + MLP
Method Test Accuracy (↑)
TINTO_blur 0.866667 ± 0.014720
IGTD 0.820667 ± 0.016228
REFINED 0.808000 ± 0.024449
DistanceMatrix 0.837333 ± 0.011879
BarGraph 0.824000 ± 0.025755
Combination 0.820667 ± 0.015528
SuperTML 0.812000 ± 0.017733
FeatureWrap 0.816000 ± 0.006831
BIE 0.805333 ± 0.011205
CNN
Method Test Accuracy (↑)
TINTO_blur 0.864667 ± 0.007674
IGTD 0.798667 ± 0.025122
REFINED 0.804667 ± 0.009309
DistanceMatrix 0.810000 ± 0.017951
BarGraph 0.806667 ± 0.026771
Combination 0.804000 ± 0.008300
SuperTML 0.661333 ± 0.047469
FeatureWrap 0.594000 ± 0.018469
BIE 0.481333 ± 0.117109
CNN + MLP
Method Test Accuracy (↑)
TINTO_blur 0.844667 ± 0.021422
IGTD 0.798000 ± 0.011690
REFINED 0.797333 ± 0.004346
DistanceMatrix 0.801333 ± 0.008028
BarGraph 0.817333 ± 0.013208
Combination 0.812000 ± 0.009603
SuperTML 0.692000 ± 0.058052
FeatureWrap 0.801333 ± 0.010954
BIE 0.518667 ± 0.382235