Binary Classification Benchmarks

Dataset Overview

Dataset Instances Features Numeric Categorical Target Classes Imbalance
Bioresponse 3751 1777 1776 1 Bioresponse 2 1.18462
Credit approval 690 15 6 9 class 2 1.247557003257329

Quick Check

Dataset Type Family / Variant Test accuracy Test ROC AUC
Bioresponse Best classical Trees / XGBoost 0.81847 ± 0.00477 0.88961 ± 0.00122
Best transformed CNN / REFINED 0.78686 ± 0.01036 0.85621 ± 0.00549
Credit approval Best classical MLP / MLP 0.87692 ± 0.00430 0.94468 ± 0.00151
Best transformed ViT / FeatureWrap 0.89808 ± 0.03010 0.95735 ± 0.00327

Bioresponse

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Train time (s) #Params FLOPs
Trees XGBoost 0.81847 ± 0.00477 0.88961 ± 0.00122 0.41230
MLP MLP 0.78615 ± 0.01182 0.84194 ± 0.00613 13.43436 1,041,409 2,082,048
ViT REFINED 0.76945 ± 0.01214 0.83747 ± 0.00358 67.72601 4,426,201 43,919,946
ViT+MLP REFINED 0.77620 ± 0.01066 0.84131 ± 0.00261 85.62639 5,496,729 637,718,480
CNN REFINED 0.78686 ± 0.01036 0.85621 ± 0.00549 56.44847 2,715,313 1,506,688,896
CNN+MLP REFINED 0.78686 ± 0.01036 0.85253 ± 0.01044 63.84759 3,799,729 1,508,856,848
Architecture Results
Tree Baselines
Method Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Train time (s)
XGBoost 0.81847 ± 0.00477 0.83107 ± 0.00477 0.82426 ± 0.00680 0.83800 ± 0.00371 0.88961 ± 0.00122 0.41230
CatBoost 0.81457 ± 0.00463 0.82622 ± 0.00461 0.81377 ± 0.00783 0.83912 ± 0.00567 0.87989 ± 0.00397 25.20507 ± 0.05985
LightGBM 0.80888 ± 0.00728 0.82135 ± 0.00736 0.81115 ± 0.01459 0.83205 ± 0.01089 0.87810 ± 0.00307 1.24869 ± 0.04968
MLP
Train loss Val loss Test loss Test accuracy (↑) Test precision Test recall Test F1 Test ROC AUC Test LogLoss Test MCC Total params FLOPs
0.38982 ± 0.03167 0.52523 ± 0.00288 0.49655 ± 0.00660 0.78615 ± 0.01182 0.81263 ± 0.01049 0.78689 ± 0.02714 0.79930 ± 0.01397 0.84194 ± 0.00613 0.49659 ± 0.00617 0.57126 ± 0.02221 1,041,409 2,082,048
ViT
Method Train time (s) Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss #Params FLOPs
TINTO 39.12782 ± 0.22880 0.69130 ± 0.00918 0.74404 ± 0.01060 0.67546 ± 0.00969 0.82885 ± 0.02909 0.72977 ± 0.01074 0.59970 ± 0.00773 1,716,385 85,861,632
IGTD 53.50183 ± 0.76464 0.74458 ± 0.02887 0.78704 ± 0.01479 0.72113 ± 0.03852 0.86885 ± 0.02820 0.82965 ± 0.01231 0.55979 ± 0.03481 4,550,263 155,284,479
REFINED 67.72601 ± 1.34755 0.76945 ± 0.01214 0.78885 ± 0.00776 0.78407 ± 0.02504 0.79475 ± 0.02279 0.83747 ± 0.00358 0.51418 ± 0.00312 4,426,201 43,919,946
FeatureWrap 63.76220 ± 1.49083 0.72220 ± 0.01321 0.73929 ± 0.00978 0.75338 ± 0.02814 0.72721 ± 0.02862 0.78393 ± 0.01199 0.57526 ± 0.01544 9,800,161 333,217,900
ViT + MLP
Method Train time (s) Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss #Params FLOPs
TINTO 62.18761 ± 6.29526 0.77336 ± 0.00463 0.78515 ± 0.00592 0.80698 ± 0.00511 0.76459 ± 0.01257 0.83574 ± 0.00424 0.50571 ± 0.00383 2,657,889 809,617,408 ± 160,014,690
IGTD 73.41846 ± 1.17743 0.76909 ± 0.01554 0.79588 ± 0.00733 0.76581 ± 0.03178 0.83016 ± 0.02565 0.83846 ± 0.00896 0.50748 ± 0.01806 5,871,831 3,481,690,302 ± 305,835,318
REFINED 85.62639 ± 2.60948 0.77620 ± 0.01066 0.78976 ± 0.01479 0.80488 ± 0.02779 0.77771 ± 0.04575 0.84131 ± 0.00261 0.51031 ± 0.01926 5,496,729 637,718,480 ± 126,040,181
FeatureWrap 83.09175 ± 5.88656 0.78224 ± 0.01070 0.79224 ± 0.01093 0.81974 ± 0.00857 0.76656 ± 0.01340 0.83531 ± 0.00602 0.50986 ± 0.01106 10,885,697 7,426,666,584 ± 652,366,162
CNN
Method Train time (s) Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss #Params FLOPs
TINTO 34.07241 ± 0.46630 0.70444 ± 0.01650 0.75249 ± 0.00673 0.69077 ± 0.02870 0.82951 ± 0.04423 0.75853 ± 0.01253 0.58758 ± 0.00870 30,369 6,680,388
IGTD 51.55007 ± 1.14411 0.63197 ± 0.08147 0.69982 ± 0.03777 0.65871 ± 0.10504 0.79934 ± 0.19212 0.75447 ± 0.03277 0.69259 ± 0.11148 5,417,457 978,246,400
REFINED 56.44847 ± 0.36734 0.79183 ± 0.01769 0.80690 ± 0.01185 0.81448 ± 0.04146 0.80262 ± 0.04169 0.85621 ± 0.00549 0.48291 ± 0.01118 2,715,313 1,506,688,896
FeatureWrap 77.51294 ± 0.31586 0.73996 ± 0.01592 0.75638 ± 0.03293 0.76865 ± 0.03896 0.75279 ± 0.08763 0.80743 ± 0.00882 0.54629 ± 0.01841 5,155,537 2,894,869,760
CNN + MLP
Method Train time (s) Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss #Params FLOPs
TINTO 52.17665 ± 2.32481 0.77869 ± 0.00749 0.79065 ± 0.01160 0.81068 ± 0.01265 0.77246 ± 0.03098 0.84023 ± 0.00584 0.50143 ± 0.00800 1,088,657 184,719,528
IGTD 59.26457 ± 1.49678 0.70764 ± 0.02508 0.73493 ± 0.04397 0.73387 ± 0.08276 0.76656 ± 0.15670 0.80774 ± 0.02291 0.60415 ± 0.08857 6,056,049 979,523,520
REFINED 63.84759 ± 1.33045 0.78686 ± 0.01036 0.80513 ± 0.00924 0.80144 ± 0.04783 0.81443 ± 0.05808 0.85253 ± 0.01044 0.50015 ± 0.02944 3,799,729 1,508,856,848
FeatureWrap 81.22601 ± 0.07450 0.74423 ± 0.00879 0.75265 ± 0.02133 0.79149 ± 0.03435 0.72197 ± 0.06192 0.81223 ± 0.01007 0.54734 ± 0.02279 5,999,569 2,896,557,568

Credit approval

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Train time (s) #Params FLOPs
Trees LightGBM 0.75577 ± 0.00527 0.95064 ± 0.00133 0.09859
MLP MLP 0.87692 ± 0.00430 0.94468 ± 0.00151 6.46258 27,137 53,760
ViT FeatureWrap 0.89808 ± 0.03010 0.95735 ± 0.00327 24.34938 7,265,761 72,676,493
ViT+MLP BIE 0.88462 ± 0.00962 0.95232 ± 0.00606 40.93451 1,859,585 1,387,447,200
CNN BarGraph 0.87115 ± 0.01994 0.94483 ± 0.00932 24.68416 189,889 132,799,648
CNN+MLP DistanceMatrix 0.88077 ± 0.01874 0.94430 ± 0.00532 35.87942 488,481 453,152,896
Architecture Results
Tree Baselines
Method Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Train time (s)
LightGBM 0.75577 ± 0.00527 0.81780 ± 0.00321 0.98276 ± 0.00000 0.70027 ± 0.00470 0.95064 ± 0.00133 0.09859 ± 0.00641
XGBoost 0.89808 ± 0.00860 0.90421 ± 0.00727 0.86207 ± 0.00000 0.95079 ± 0.01597 0.94535 ± 0.00056 0.41230 ± 0.00573
CatBoost 0.88462 ± 0.00000 0.88679 ± 0.00000 0.81035 ± 0.00000 0.97917 ± 0.00000 0.94670 ± 0.00041 3.63444 ± 0.05896
MLP
Train loss Val loss Test loss Test accuracy (↑) Test precision Test recall Test F1 (↑) Test ROC AUC Test MCC Total params FLOPs
0.32544 ± 0.01337 0.32932 ± 0.00195 0.28471 ± 0.00117 0.87692 ± 0.00430 0.93474 ± 0.00934 0.83793 ± 0.00944 0.88363 ± 0.00421 0.94468 ± 0.00151 0.75903 ± 0.00888 27,137 53,760
ViT
Method Train time (s) Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss #Params FLOPs
TINTO 24.18381 ± 0.14994 0.97334 ± 0.00296 0.82123 ± 0.03314 0.88654 ± 0.02193 0.86791 ± 0.03361 0.94138 ± 0.01966 0.90270 ± 0.01715 1,600,609 83,777,096
IGTD 68.75373 ± 0.10999 0.97080 ± 0.00332 0.75752 ± 0.01060 0.84423 ± 0.01580 0.84125 ± 0.02458 0.88966 ± 0.02885 0.86430 ± 0.01354 19,520,281 667,902,402
REFINED 29.86047 ± 0.45036 0.97190 ± 0.00150 0.76177 ± 0.01712 0.87500 ± 0.00680 0.91834 ± 0.00850 0.85172 ± 0.01542 0.88368 ± 0.00721 5,268,487 696,741,440
DistanceMatrix 28.01472 ± 0.10554 0.97244 ± 0.00438 0.75849 ± 0.03001 0.86539 ± 0.02150 0.89253 ± 0.04424 0.86552 ± 0.03316 0.87773 ± 0.01787 3,595,591 71,253,567
BarGraph 33.32826 ± 2.41426 0.97363 ± 0.00281 0.77823 ± 0.03742 0.86539 ± 0.01799 0.87735 ± 0.02393 0.88276 ± 0.02833 0.87968 ± 0.01632 1,036,999 20,876,839
Combination 43.79120 ± 0.31413 0.97146 ± 0.00178 0.76056 ± 0.01574 0.86923 ± 0.01874 0.88397 ± 0.03368 0.88276 ± 0.00771 0.88301 ± 0.01423 2,364,615 47,539,495
SuperTML 55.46818 ± 0.95789 0.97304 ± 0.00159 0.76590 ± 0.03576 0.86731 ± 0.01720 0.89317 ± 0.06675 0.87586 ± 0.06264 0.88065 ± 0.00824 11,972,449 1,580,762,012
FeatureWrap 24.34938 ± 0.09730 0.97597 ± 0.00245 0.82721 ± 0.02674 0.89808 ± 0.03010 0.87395 ± 0.04923 0.95862 ± 0.00944 0.91357 ± 0.02319 7,265,761 72,676,493
BIE 31.80109 ± 0.45090 0.97138 ± 0.00737 0.76480 ± 0.02098 0.87308 ± 0.01580 0.89001 ± 0.02562 0.88276 ± 0.03738 0.88563 ± 0.01540 1,831,681 62,989,904
ViT + MLP
Method Train time (s) Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss #Params FLOPs
TINTO 36.11794 ± 0.54655 0.97265 ± 0.00400 0.78003 ± 0.02799 0.87308 ± 0.02394 0.88942 ± 0.05987 0.88966 ± 0.04496 0.88714 ± 0.01516 2,153,313 774,421,568
IGTD 88.77799 ± 1.40963 0.97031 ± 0.00462 0.74201 ± 0.03719 0.85577 ± 0.02255 0.88956 ± 0.03197 0.84828 ± 0.04463 0.86746 ± 0.02201 19,548,953 6,611,922,832
REFINED 37.56043 ± 0.44217 0.97315 ± 0.00257 0.75091 ± 0.02145 0.87692 ± 0.00430 0.93162 ± 0.01586 0.84138 ± 0.00771 0.88408 ± 0.00269 5,142,983 13,348,791,360
DistanceMatrix 33.55061 ± 1.04348 0.97134 ± 0.00276 0.73496 ± 0.01761 0.87308 ± 0.00430 0.94842 ± 0.01573 0.81724 ± 0.01542 0.87775 ± 0.00454 3,738,311 779,787,256
BarGraph 47.16871 ± 1.24050 0.96340 ± 0.00583 0.77224 ± 0.02284 0.87308 ± 0.01053 0.89774 ± 0.01961 0.87241 ± 0.02313 0.88457 ± 0.00988 1,084,551 803,412,036
Combination 58.56323 ± 6.61817 0.96940 ± 0.00273 0.73836 ± 0.04004 0.87308 ± 0.00430 0.91746 ± 0.03598 0.85172 ± 0.04496 0.88189 ± 0.00790 2,436,903 527,485,752
SuperTML 74.32829 ± 5.53914 0.97351 ± 0.00345 0.75122 ± 0.03228 0.86346 ± 0.01850 0.88901 ± 0.06414 0.87241 ± 0.06047 0.87717 ± 0.01092 12,460,001 30,112,373,304
FeatureWrap 35.66323 ± 0.36383 0.97168 ± 0.00230 0.76905 ± 0.03416 0.89039 ± 0.01458 0.89089 ± 0.02661 0.91724 ± 0.03738 0.90311 ± 0.01369 7,325,569 3,665,691,148
BIE 40.93451 ± 0.83433 0.97242 ± 0.00145 0.75235 ± 0.03215 0.88462 ± 0.00962 0.94643 ± 0.02228 0.84138 ± 0.01889 0.89051 ± 0.00897 1,859,585 1,387,447,200
CNN
Method Train time (s) Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss #Params FLOPs
TINTO 22.76856 ± 0.21394 0.97207 ± 0.00154 0.76000 ± 0.03333 0.87885 ± 0.01609 0.91333 ± 0.01960 0.86552 ± 0.03316 0.88831 ± 0.01599 108,793 16,313,808
IGTD 34.86336 ± 0.12589 0.96198 ± 0.00949 0.70385 ± 0.06975 0.85577 ± 0.01923 0.90302 ± 0.01110 0.83103 ± 0.04463 0.86486 ± 0.02211 2,758,497 26,344,896
REFINED 19.94357 ± 0.08692 0.96625 ± 0.00279 0.72330 ± 0.00569 0.86731 ± 0.01971 0.90918 ± 0.04680 0.85172 ± 0.06744 0.87678 ± 0.02234 2,112,225 20,382,208
DistanceMatrix 32.35910 ± 2.07113 0.96938 ± 0.00313 0.77864 ± 0.02282 0.85577 ± 0.02150 0.87447 ± 0.04377 0.86897 ± 0.03575 0.87059 ± 0.01765 431,553 321,349,776
BarGraph 24.68416 ± 0.52450 0.96888 ± 0.00310 0.71735 ± 0.04057 0.87115 ± 0.01994 0.92317 ± 0.04319 0.84138 ± 0.02557 0.87950 ± 0.01609 189,889 132,799,648
Combination 30.61405 ± 0.78141 0.96607 ± 0.00320 0.76374 ± 0.02576 0.87692 ± 0.02085 0.91658 ± 0.02910 0.85862 ± 0.03932 0.88591 ± 0.02025 1,126,289 729,226,960
SuperTML 56.27273 ± 1.87451 0.97041 ± 0.00524 0.75280 ± 0.02933 0.85962 ± 0.03160 0.86397 ± 0.06470 0.89655 ± 0.04044 0.87766 ± 0.02171 357,681 244,017,024
FeatureWrap 21.80783 ± 0.12512 0.97182 ± 0.00252 0.80075 ± 0.04721 0.87885 ± 0.02413 0.87491 ± 0.06307 0.92069 ± 0.04152 0.89497 ± 0.01722 1,679,265 26,047,680
BIE 23.68857 ± 1.57080 0.97263 ± 0.00359 0.79526 ± 0.05025 0.82692 ± 0.02040 0.80599 ± 0.02899 0.91035 ± 0.01889 0.85457 ± 0.01417 1,219,369 452,641,280
CNN + MLP
Method Train time (s) Test Acc (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss #Params FLOPs
TINTO 23.51064 ± 1.06906 0.96707 ± 0.00614 0.75082 ± 0.02054 0.86731 ± 0.02489 0.89853 ± 0.04504 0.86207 ± 0.03448 0.87889 ± 0.02100 170,793 16,437,264
IGTD 36.58546 ± 0.15293 0.95951 ± 0.00815 0.72782 ± 0.01887 0.88462 ± 0.00962 0.93942 ± 0.01918 0.84828 ± 0.01889 0.89128 ± 0.00918 2,735,457 26,298,688
REFINED 21.89030 ± 0.07673 0.96761 ± 0.00358 0.72065 ± 0.02280 0.87885 ± 0.00860 0.94184 ± 0.01278 0.83448 ± 0.01542 0.88479 ± 0.00862 2,491,169 21,139,456
DistanceMatrix 35.87942 ± 2.03683 0.97073 ± 0.00566 0.72532 ± 0.04591 0.88077 ± 0.01874 0.90919 ± 0.05523 0.87931 ± 0.05172 0.89164 ± 0.01540 488,481 321,463,144
BarGraph 35.27408 ± 3.46612 0.97111 ± 0.00284 0.71134 ± 0.03457 0.87308 ± 0.01426 0.94121 ± 0.01852 0.82414 ± 0.01889 0.87865 ± 0.01386 219,425 132,858,336
Combination 49.18553 ± 2.91262 0.96438 ± 0.00472 0.70106 ± 0.02357 0.85769 ± 0.02753 0.88503 ± 0.05529 0.86207 ± 0.05314 0.87115 ± 0.02328 1,317,009 15,321,762,960
SuperTML 56.67474 ± 4.74708 0.96369 ± 0.00613 0.74369 ± 0.03724 0.86731 ± 0.00805 0.86725 ± 0.03440 0.90345 ± 0.05115 0.88339 ± 0.00958 441,649 244,184,512
FeatureWrap 23.54730 ± 0.12061 0.97332 ± 0.00305 0.74736 ± 0.03495 0.87115 ± 0.00860 0.92557 ± 0.03114 0.83793 ± 0.03132 0.87876 ± 0.00864 1,775,201 26,239,200
BIE 26.65689 ± 1.21066 0.96959 ± 0.00750 0.76029 ± 0.01694 0.85385 ± 0.02085 0.86260 ± 0.03206 0.87931 ± 0.02112 0.87046 ± 0.01693 1,475,625 453,152,896