Binary Classification Benchmarks
Dataset Overview
| Dataset | Instances | Features | Numeric | Categorical | Target | Classes | Imbalance |
|---|---|---|---|---|---|---|---|
| Adult | 48842 | 14 | 6 | 8 | class | 2 | 3.179173440574998 |
| Bioresponse | 3751 | 1776 | 1776 | 0 | target | 2 | 1.1846243447874198 |
| Credit-approval | 690 | 15 | 6 | 9 | class | 2 | 1.247557003257329 |
| Dengue chikunguya bin | 11448 | 26 | 2 | 24 | CLASSI_FIN | 2 | 1.0 |
| Nomao | 34465 | 118 | 89 | 29 | Class | 2 | 2.5011174319382365 |
| Preprocessed heloc | 10459 | 23 | 23 | 0 | RiskPerformance | 2 | 1.1246 |
| Qsar-biodeg | 1055 | 41 | 41 | 0 | Class | 2 | 1.9634831460674158 |
| Sick | 3772 | 29 | 7 | 22 | Class | 2 | 15.329004329004329 |
Quick Check
| Dataset | Type | Family / Variant | Test accuracy | Test ROC AUC |
|---|---|---|---|---|
| Adult | Best classical | Trees / CatBoost | 0.87561 ± 0.00119 | 0.93126 ± 0.00019 |
| Best transformed | ViT / SuperTML | 0.87359 ± 0.00136 | 0.92914 ± 0.00167 | |
| Bioresponse | Best classical | Trees / XGBoost | 0.81847 ± 0.00477 | 0.88961 ± 0.00122 |
| Best transformed | CNN / REFINED | 0.79183 ± 0.01769 | 0.85621 ± 0.00549 | |
| Credit-approval | Best classical | Trees / CatBoost | 0.88462 ± 0.00000 | 0.94858 ± 0.00155 |
| Best transformed | ViT / FeatureWrap | 0.89808 ± 0.03010 | 0.95735 ± 0.00327 | |
| Dengue chikunguya bin | Best classical | Trees / CatBoost | 0.77381 ± 0.00152 | 0.84859 ± 0.00078 |
| Best transformed | CNN+MLP / SuperTML | 0.76577 ± 0.00374 | 0.83457 ± 0.00086 | |
| Nomao | Best classical | Trees / XGBoost | 0.97033 ± 0.00082 | 0.99467 ± 0.00018 |
| Best transformed | CNN+MLP / BIE | 0.96549 ± 0.00095 | 0.99383 ± 0.00052 | |
| Preprocessed heloc | Best classical | Trees / XGBoost | 0.73153 ± 0.00194 | 0.79220 ± 0.00038 |
| Best transformed | ViT / BarGraph | 0.72856 ± 0.00239 | 0.78951 ± 0.00144 | |
| Qsar-biodeg | Best classical | Trees / CatBoost | 0.84528 ± 0.00954 | 0.90328 ± 0.00679 |
| Best transformed | CNN+MLP / REFINED | 0.85912 ± 0.01052 | 0.90952 ± 0.00963 | |
| Sick | Best classical | Trees / XGBoost | 0.99470 ± 0.00000 | 0.99956 ± 0.00006 |
| Best transformed | ViT / REFINED | 0.99046 ± 0.00443 | 0.99864 ± 0.00083 |
Adult
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test ROC AUC (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|
| Trees | CatBoost | 0.87561 ± 0.00119 | 0.93126 ± 0.00019 | 0.71620 ± 0.00276 | 28.98606 ± 0.24880 | — | — |
| MLP | MLP | 0.85953 ± 0.00222 | 0.91176 ± 0.00086 | 0.68127 ± 0.00440 | 54.85229 ± 0.74675 | 3,521 ± 0.00000 | 7,008 ± 0.00000 |
| ViT | SuperTML | 0.87359 ± 0.00136 | 0.92914 ± 0.00167 | 0.71088 ± 0.00414 | 6,181.48851 ± 339.90587 | 5,228,897 ± 0.00000 | 352,012,928,888.79999 ± 722,733,301,972.46082 |
| ViT+MLP | SuperTML | 0.87274 ± 0.00118 | 0.93130 ± 0.00115 | 0.71040 ± 0.00632 | 6,177.39169 ± 378.95922 | 5,233,441 ± 0.00000 | 37,056,822,293.6 ± 7,158,262,348.27 |
| CNN | SuperTML | 0.87092 ± 0.00105 | 0.92873 ± 0.00096 | 0.70455 ± 0.01283 | 6,506.72809 ± 361.64444 | 1,432,329 ± 0.00000 | 59,225,658,572.8 ± 23,105,015,668.63228 |
| CNN+MLP | SuperTML | 0.87225 ± 0.00133 | 0.93014 ± 0.00039 | 0.70655 ± 0.00922 | 6,664.94851 ± 385.20819 | 1,400,665 ± 0.00000 | 3,967,548,385,024 ± 8,735,996,902,048.83398 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.88360 ± 0.00029 | 0.87303 ± 0.00086 | 0.87561 ± 0.00119 | 0.71620 ± 0.00276 | 0.78855 ± 0.00359 | 0.65602 ± 0.00337 | 0.93126 ± 0.00019 | 0.27150 ± 0.00043 | 0.64183 ± 0.00348 | 28.98606 ± 0.24880 | — | — |
| LightGBM | 0.88233 ± 0.00000 | 0.87033 ± 0.00000 | 0.87485 ± 0.00000 | 0.71548 ± 0.00000 | 0.78435 ± 0.00000 | 0.65773 ± 0.00000 | 0.93068 ± 0.00000 | 0.27285 ± 0.00000 | 0.64010 ± 0.00000 | 0.74575 ± 0.02078 | — | — |
| XGBoost | 0.89759 ± 0.00057 | 0.87377 ± 0.00088 | 0.87474 ± 0.00086 | 0.71367 ± 0.00186 | 0.78753 ± 0.00316 | 0.65248 ± 0.00247 | 0.93168 ± 0.00010 | 0.26967 ± 0.00020 | 0.63901 ± 0.00244 | 4.73544 ± 0.21290 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.86521 ± 0.00235 | 0.85607 ± 0.00092 | 0.85953 ± 0.00222 | 0.68127 ± 0.00440 | 0.74533 ± 0.00996 | 0.62750 ± 0.00866 | 0.91176 ± 0.00086 | 0.31164 ± 0.00128 | 0.59571 ± 0.00570 | 3,521 ± 0.00000 | 7,008 ± 0.00000 | 54.85229 ± 0.74675 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.83128 ± 0.00089 | 0.83729 ± 0.00108 | 0.83385 ± 0.00100 | 0.59862 ± 0.00506 | 0.70936 ± 0.00836 | 0.51797 ± 0.01116 | 0.88431 ± 0.00037 | 0.35248 ± 0.00050 | 0.50691 ± 0.00317 | 7,444,313 ± 0.00000 | 107,623,264,136 ± 230,007,694,241.9996 | 955.04623 ± 298.05726 |
| IGTD | 0.86015 ± 0.00557 | 0.85678 ± 0.00265 | 0.86158 ± 0.00332 | 0.68040 ± 0.00919 | 0.76002 ± 0.00810 | 0.61597 ± 0.01266 | 0.91413 ± 0.00414 | 0.30298 ± 0.00639 | 0.59867 ± 0.01054 | 5,392,857 ± 0.00000 | 287,033,393,073.59998 ± 628,903,515,621.57666 | 940.20070 ± 313.79190 |
| REFINED | 0.86328 ± 0.00182 | 0.85771 ± 0.00083 | 0.86191 ± 0.00254 | 0.68188 ± 0.00769 | 0.75960 ± 0.00736 | 0.61871 ± 0.01240 | 0.91688 ± 0.00101 | 0.29817 ± 0.00201 | 0.60003 ± 0.00826 | 21,741,465 ± 0.00000 | 4,628,581,563,982.59961 ± 9,329,933,670,002.79297 | 1,652.54363 ± 41.19085 |
| DistanceMatrix | 0.86464 ± 0.00151 | 0.85807 ± 0.00062 | 0.86185 ± 0.00161 | 0.68275 ± 0.00507 | 0.75787 ± 0.01098 | 0.62145 ± 0.01368 | 0.91661 ± 0.00097 | 0.29868 ± 0.00162 | 0.60047 ± 0.00451 | 3,296,737 ± 0.00000 | 1,834,562,810.4 ± 446,684,280.80716 | 4,508.00144 ± 375.06081 |
| BarGraph | 0.86968 ± 0.00270 | 0.86317 ± 0.00054 | 0.86450 ± 0.00094 | 0.68466 ± 0.00868 | 0.77271 ± 0.01430 | 0.61529 ± 0.02282 | 0.91980 ± 0.00131 | 0.29290 ± 0.00290 | 0.60640 ± 0.00525 | 24,031,129 ± 0.00000 | 6,258,016,842,372.7998 ± 13,901,105,812,226.26172 | 5,940.15903 ± 237.16990 |
| Combination | 0.86008 ± 0.00138 | 0.86022 ± 0.00110 | 0.86213 ± 0.00221 | 0.68678 ± 0.00726 | 0.75232 ± 0.00822 | 0.63194 ± 0.01422 | 0.91691 ± 0.00134 | 0.29941 ± 0.00295 | 0.60308 ± 0.00739 | 5,994,017 ± 0.00000 | 218,986,449,776 ± 480,295,508,944.83264 | 4,857.28221 ± 371.24368 |
| SuperTML | 0.87465 ± 0.00145 | 0.86934 ± 0.00112 | 0.87359 ± 0.00136 | 0.71088 ± 0.00414 | 0.78505 ± 0.00701 | 0.64963 ± 0.00917 | 0.92914 ± 0.00167 | 0.27369 ± 0.00296 | 0.63560 ± 0.00424 | 5,228,897 ± 0.00000 | 352,012,928,888.79999 ± 722,733,301,972.46082 | 6,181.48851 ± 339.90587 |
| FeatureWrap | 0.84682 ± 0.00293 | 0.84362 ± 0.00086 | 0.84272 ± 0.00232 | 0.62722 ± 0.00655 | 0.72443 ± 0.00803 | 0.55311 ± 0.00979 | 0.89529 ± 0.00143 | 0.33598 ± 0.00187 | 0.53761 ± 0.00717 | 2,422,585 ± 0.00000 | 867,308,785,689.59998 ± 1,919,113,357,454.8186 | 932.27980 ± 307.03148 |
| BIE | 0.87630 ± 0.00094 | 0.86852 ± 0.00071 | 0.87247 ± 0.00126 | 0.70830 ± 0.00466 | 0.78225 ± 0.00589 | 0.64723 ± 0.01011 | 0.92942 ± 0.00099 | 0.27481 ± 0.00214 | 0.63229 ± 0.00440 | 1,593,601 ± 0.00000 | 12,345,122,048 ± 27,115,085,185.77042 | 4,610.25863 ± 336.54583 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.86337 ± 0.00180 | 0.85403 ± 0.00114 | 0.85986 ± 0.00125 | 0.67875 ± 0.00722 | 0.75175 ± 0.01042 | 0.61905 ± 0.01772 | 0.91180 ± 0.00059 | 0.30952 ± 0.00105 | 0.59493 ± 0.00523 | 7,222,777 ± 0.00000 | 586,200,022,170.40002 ± 1,270,841,484,703.28784 | 1,056.53155 ± 334.00480 |
| IGTD | 0.86384 ± 0.00271 | 0.85703 ± 0.00054 | 0.86147 ± 0.00127 | 0.67790 ± 0.01154 | 0.76465 ± 0.02129 | 0.61015 ± 0.03098 | 0.91554 ± 0.00043 | 0.30127 ± 0.00071 | 0.59779 ± 0.00634 | 5,409,593 ± 0.00000 | 670,065,928,841.59998 ± 1,495,405,248,414.19141 | 1,093.33736 ± 374.21048 |
| REFINED | 0.86341 ± 0.00075 | 0.85793 ± 0.00031 | 0.86314 ± 0.00187 | 0.68828 ± 0.00689 | 0.75621 ± 0.00614 | 0.63172 ± 0.01324 | 0.91792 ± 0.00071 | 0.29653 ± 0.00097 | 0.60557 ± 0.00669 | 21,777,145 ± 0.00000 | 17,787,701,979,933.19922 ± 39,481,469,747,923.86719 | 1,873.85844 ± 65.74827 |
| DistanceMatrix | 0.86239 ± 0.00218 | 0.85591 ± 0.00110 | 0.85986 ± 0.00122 | 0.66759 ± 0.00849 | 0.77260 ± 0.02083 | 0.58871 ± 0.02553 | 0.91395 ± 0.00092 | 0.30392 ± 0.00085 | 0.58993 ± 0.00325 | 3,311,393 ± 0.00000 | 2,919,231,294.4 ± 852,405,747.02616 | 4,826.9087 ± 45.69974 |
| BarGraph | 0.86692 ± 0.00427 | 0.86113 ± 0.00152 | 0.86458 ± 0.00210 | 0.68986 ± 0.00924 | 0.76315 ± 0.01128 | 0.62989 ± 0.02054 | 0.91823 ± 0.00109 | 0.29553 ± 0.00194 | 0.60903 ± 0.00788 | 24,050,201 ± 0.00000 | 4,883,756,924,620.7998 ± 10,798,147,023,876.53906 | 6,173.47881 ± 267.93039 |
| Combination | 0.86802 ± 0.00200 | 0.86099 ± 0.00129 | 0.86264 ± 0.00135 | 0.68374 ± 0.00906 | 0.76121 ± 0.00819 | 0.62099 ± 0.02010 | 0.91747 ± 0.00177 | 0.29621 ± 0.00304 | 0.60240 ± 0.00697 | 5,958,881 ± 0.00000 | 7,196,016,444.8 ± 1,635,801,603.87701 | 4,978.12597 ± 387.62317 |
| SuperTML | 0.88046 ± 0.00154 | 0.86997 ± 0.00148 | 0.87274 ± 0.00118 | 0.71040 ± 0.00632 | 0.77981 ± 0.00789 | 0.65260 ± 0.01550 | 0.93130 ± 0.00115 | 0.27024 ± 0.00273 | 0.63390 ± 0.00516 | 5,233,441 ± 0.00000 | 37,056,822,293.6 ± 7,158,262,348.27 | 6,177.39169 ± 378.95922 |
| FeatureWrap | 0.86285 ± 0.00215 | 0.85665 ± 0.00252 | 0.85801 ± 0.00179 | 0.67467 ± 0.00224 | 0.74679 ± 0.01039 | 0.61540 ± 0.00787 | 0.91125 ± 0.00065 | 0.31072 ± 0.00144 | 0.58948 ± 0.00368 | 2,426,745 ± 0.00000 | 1,228,120,721,164.80005 ± 1,951,164,300,184.09937 | 1,091.41359 ± 369.05713 |
| BIE | 0.87888 ± 0.00244 | 0.86926 ± 0.00051 | 0.87103 ± 0.00185 | 0.70685 ± 0.00897 | 0.77513 ± 0.01649 | 0.65043 ± 0.02455 | 0.92784 ± 0.00171 | 0.27826 ± 0.00204 | 0.62930 ± 0.00648 | 1,609,857 ± 0.00000 | 2,645,073,401.6 ± 555,765,262.00882 | 4,946.27398 ± 467.90596 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.83209 ± 0.00174 | 0.83456 ± 0.00120 | 0.83352 ± 0.00163 | 0.60663 ± 0.02047 | 0.69957 ± 0.02721 | 0.53862 ± 0.04913 | 0.88401 ± 0.00072 | 0.35365 ± 0.00100 | 0.51172 ± 0.01088 | 100,193 ± 0.00000 | 1,684,666,163.2 ± 2,754,555,136.56125 | 478.57181 ± 160.01648 |
| IGTD | 0.86447 ± 0.00324 | 0.85616 ± 0.00192 | 0.85959 ± 0.00142 | 0.67791 ± 0.00607 | 0.75138 ± 0.00935 | 0.61780 ± 0.01458 | 0.91392 ± 0.00058 | 0.30404 ± 0.00116 | 0.59396 ± 0.00505 | 38,833 ± 0.00000 | 6,470,703,049.6 ± 11,396,710,036.89308 | 457.55727 ± 168.56427 |
| REFINED | 0.86487 ± 0.00277 | 0.85779 ± 0.00110 | 0.86229 ± 0.00088 | 0.68948 ± 0.00649 | 0.74896 ± 0.01374 | 0.63936 ± 0.02127 | 0.91550 ± 0.00092 | 0.30210 ± 0.00237 | 0.60510 ± 0.00386 | 12,174,849 ± 0.00000 | 1,720,528,502,553.6001 ± 1,569,858,666,121.05493 | 541.75531 ± 189.70280 |
| DistanceMatrix | 0.86197 ± 0.00147 | 0.85725 ± 0.00125 | 0.85940 ± 0.00208 | 0.68444 ± 0.00875 | 0.73906 ± 0.00692 | 0.63765 ± 0.01859 | 0.91542 ± 0.00127 | 0.30104 ± 0.00174 | 0.59744 ± 0.00848 | 2,790,801 ± 0.00000 | 8,200,082,621,056 ± 18,146,899,842,796.75781 | 6,518.84197 ± 261.08108 |
| BarGraph | 0.86547 ± 0.00157 | 0.86085 ± 0.00088 | 0.86090 ± 0.00154 | 0.67939 ± 0.00532 | 0.75731 ± 0.00508 | 0.61609 ± 0.00967 | 0.91640 ± 0.00079 | 0.29930 ± 0.00143 | 0.59694 ± 0.00528 | 7,644,897 ± 0.00000 | 9,004,026,309,913.59961 ± 19,597,071,669,553.15234 | 7,423.92973 ± 251.21881 |
| Combination | 0.87075 ± 0.00148 | 0.86380 ± 0.00049 | 0.86461 ± 0.00160 | 0.68443 ± 0.00971 | 0.77421 ± 0.01875 | 0.61426 ± 0.02639 | 0.92025 ± 0.00057 | 0.29313 ± 0.00074 | 0.60664 ± 0.00612 | 1,576,241 ± 0.00000 | 62,225,010,278.4 ± 16,984,745,198.02466 | 6,244.33529 ± 242.47695 |
| SuperTML | 0.87654 ± 0.00305 | 0.86921 ± 0.00074 | 0.87092 ± 0.00105 | 0.70455 ± 0.01283 | 0.77915 ± 0.01987 | 0.64438 ± 0.03320 | 0.92873 ± 0.00096 | 0.27546 ± 0.00236 | 0.62814 ± 0.00758 | 1,432,329 ± 0.00000 | 59,225,658,572.8 ± 23,105,015,668.63228 | 6,506.72809 ± 361.64444 |
| FeatureWrap | 0.84752 ± 0.00160 | 0.84592 ± 0.00131 | 0.84673 ± 0.00133 | 0.63646 ± 0.01153 | 0.73590 ± 0.01070 | 0.56132 ± 0.02392 | 0.90074 ± 0.00095 | 0.32895 ± 0.00138 | 0.54985 ± 0.00784 | 899,769 ± 0.00000 | 370,919,801,030.40002 ± 789,042,880,026.20093 | 747.08329 ± 284.61185 |
| BIE | 0.88156 ± 0.00547 | 0.86820 ± 0.00244 | 0.86925 ± 0.00191 | 0.70275 ± 0.01175 | 0.77077 ± 0.01686 | 0.64689 ± 0.03157 | 0.92401 ± 0.00215 | 0.28519 ± 0.00246 | 0.62419 ± 0.00940 | 415,385 ± 0.00000 | 389,462,076,129.59998 ± 852,031,168,299.22314 | 4,916.45485 ± 321.72315 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.86172 ± 0.00238 | 0.85296 ± 0.00084 | 0.85983 ± 0.00100 | 0.67662 ± 0.00294 | 0.75539 ± 0.01163 | 0.61301 ± 0.01254 | 0.91182 ± 0.00050 | 0.31034 ± 0.00163 | 0.59374 ± 0.00043 | 99,009 ± 0.00000 | 19,466,003,283.2 ± 27,266,599,498.37244 | 544.87111 ± 184.90659 |
| IGTD | 0.86247 ± 0.00033 | 0.85635 ± 0.00161 | 0.85888 ± 0.00228 | 0.67780 ± 0.00797 | 0.74737 ± 0.01681 | 0.62076 ± 0.02172 | 0.91260 ± 0.00053 | 0.30736 ± 0.00047 | 0.59291 ± 0.00661 | 42,425 ± 0.00000 | 4,091,177,942.4 ± 5,544,591,060.72648 | 553.18020 ± 212.15965 |
| REFINED | 0.86241 ± 0.00441 | 0.85643 ± 0.00091 | 0.86090 ± 0.00117 | 0.67987 ± 0.01179 | 0.75724 ± 0.02093 | 0.61837 ± 0.03476 | 0.91496 ± 0.00080 | 0.30327 ± 0.00155 | 0.59784 ± 0.00745 | 11,238,497 ± 0.00000 | 1,063,696,149,612.80005 ± 1,564,896,883,320.57617 | 656.11336 ± 243.87783 |
| DistanceMatrix | 0.86204 ± 0.00249 | 0.85673 ± 0.00169 | 0.86030 ± 0.00095 | 0.67165 ± 0.00641 | 0.76767 ± 0.01450 | 0.59749 ± 0.01848 | 0.91556 ± 0.00099 | 0.30197 ± 0.00159 | 0.59231 ± 0.00322 | 2,909,233 ± 0.00000 | 2,247,538,406,220.7998 ± 4,784,171,933,553.71582 | 6,372.80156 ± 468.18856 |
| BarGraph | 0.86637 ± 0.00446 | 0.85992 ± 0.00090 | 0.86174 ± 0.00166 | 0.67459 ± 0.01158 | 0.77283 ± 0.02208 | 0.59977 ± 0.02964 | 0.91764 ± 0.00157 | 0.29773 ± 0.00308 | 0.59679 ± 0.00626 | 7,750,529 ± 0.00000 | 6,288,807,287,379.2002 ± 13,433,949,662,267.45508 | 7,405.33008 ± 376.03781 |
| Combination | 0.87096 ± 0.00140 | 0.86353 ± 0.00061 | 0.86303 ± 0.00162 | 0.68312 ± 0.00661 | 0.76562 ± 0.01866 | 0.61746 ± 0.02224 | 0.91945 ± 0.00127 | 0.29420 ± 0.00223 | 0.60300 ± 0.00371 | 1,587,825 ± 0.00000 | 67,120,074,515.2 ± 13,956,301,557.83827 | 6,240.85022 ± 242.35425 |
| SuperTML | 0.87948 ± 0.00260 | 0.86871 ± 0.00124 | 0.87225 ± 0.00133 | 0.70655 ± 0.00922 | 0.78543 ± 0.02582 | 0.64358 ± 0.03119 | 0.93014 ± 0.00039 | 0.27299 ± 0.00156 | 0.63169 ± 0.00416 | 1,400,665 ± 0.00000 | 3,967,548,385,024 ± 8,735,996,902,048.83398 | 6,664.94851 ± 385.20819 |
| FeatureWrap | 0.86406 ± 0.00207 | 0.85856 ± 0.00044 | 0.85983 ± 0.00149 | 0.67871 ± 0.01130 | 0.75208 ± 0.01847 | 0.61962 ± 0.03130 | 0.91507 ± 0.00086 | 0.30407 ± 0.00219 | 0.59524 ± 0.00729 | 883,257 ± 0.00000 | 446,669,120,432 ± 661,605,539,735.07715 | 820.88079 ± 319.55702 |
| BIE | 0.87849 ± 0.00181 | 0.86836 ± 0.00139 | 0.87023 ± 0.00140 | 0.69858 ± 0.01165 | 0.78679 ± 0.02008 | 0.62943 ± 0.03211 | 0.92626 ± 0.00086 | 0.28148 ± 0.00370 | 0.62403 ± 0.00750 | 471,417 ± 0.00000 | 389,425,311,723.20001 ± 852,804,903,407.22351 | 4,964.46268 ± 304.83804 |
Bioresponse
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test ROC AUC (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|
| Trees | XGBoost | 0.81847 ± 0.00477 | 0.88961 ± 0.00122 | 0.83107 ± 0.00477 | 11.42545 ± 0.10045 | — | — |
| MLP | MLP | 0.78615 ± 0.01182 | 0.84194 ± 0.00613 | 0.79930 ± 0.01397 | 13.43436 ± 0.30575 | 1,041,409 ± 0.00000 | 2,082,048 ± 0.00000 |
| ViT | REFINED | 0.76945 ± 0.01214 | 0.83747 ± 0.00358 | 0.78885 ± 0.00776 | 67.72601 ± 1.34755 | 4,426,201 ± 0.00000 | 43,919,946 ± 0.00000 |
| ViT+MLP | FeatureWrap | 0.78224 ± 0.01070 | 0.83531 ± 0.00602 | 0.79224 ± 0.01093 | 83.09175 ± 5.88656 | 10,885,697 ± 0.00000 | 7,426,666,584 ± 652,366,161.89173 |
| CNN | REFINED | 0.79183 ± 0.01769 | 0.85621 ± 0.00549 | 0.80690 ± 0.01185 | 56.44847 ± 0.36734 | 2,715,313 ± 0.00000 | 1,506,688,896 ± 0.00000 |
| CNN+MLP | REFINED | 0.78686 ± 0.01036 | 0.85253 ± 0.01044 | 0.80513 ± 0.00924 | 63.84759 ± 1.33045 | 3,799,729 ± 0.00000 | 1,508,856,848 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 1.00000 ± 0.00000 | 0.79396 ± 0.00562 | 0.81456 ± 0.00463 | 0.82622 ± 0.00461 | 0.83912 ± 0.00567 | 0.81377 ± 0.00783 | 0.87989 ± 0.00397 | 0.50656 ± 0.01459 | 0.62793 ± 0.00928 | 25.20507 ± 0.05985 | — | — |
| LightGBM | 0.99992 ± 0.00017 | 0.80568 ± 0.00570 | 0.80888 ± 0.00728 | 0.82135 ± 0.00736 | 0.83205 ± 0.01089 | 0.81115 ± 0.01459 | 0.87810 ± 0.00307 | 0.47766 ± 0.00933 | 0.61636 ± 0.01457 | 1.24869 ± 0.04968 | — | — |
| XGBoost | 1.00000 ± 0.00000 | 0.79858 ± 0.00323 | 0.81847 ± 0.00477 | 0.83107 ± 0.00477 | 0.83800 ± 0.00371 | 0.82426 ± 0.00680 | 0.88961 ± 0.00122 | 0.43844 ± 0.00405 | 0.63506 ± 0.00942 | 11.42545 ± 0.10045 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.83040 ± 0.02068 | 0.75950 ± 0.01546 | 0.78615 ± 0.01182 | 0.79930 ± 0.01397 | 0.81263 ± 0.01049 | 0.78688 ± 0.02714 | 0.84194 ± 0.00613 | 0.49659 ± 0.00617 | 0.57126 ± 0.02221 | 1,041,409 ± 0.00000 | 2,082,048 ± 0.00000 | 13.43436 ± 0.30575 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.72556 ± 0.00357 | 0.69663 ± 0.00726 | 0.69130 ± 0.00918 | 0.74404 ± 0.01060 | 0.67546 ± 0.00969 | 0.82885 ± 0.02909 | 0.72977 ± 0.01074 | 0.59970 ± 0.00773 | 0.37811 ± 0.01951 | 1,716,385 ± 0.00000 | 85,861,632 ± 0.00000 | 39.12782 ± 0.22880 |
| IGTD | 0.85097 ± 0.03909 | 0.76199 ± 0.01589 | 0.74458 ± 0.02887 | 0.78704 ± 0.01479 | 0.72113 ± 0.03852 | 0.86885 ± 0.02820 | 0.82965 ± 0.01231 | 0.55979 ± 0.03481 | 0.49042 ± 0.05255 | 4,550,263 ± 0.00000 | 155,284,479 ± 0.00000 | 53.50183 ± 0.76464 |
| REFINED | 0.81509 ± 0.02089 | 0.75666 ± 0.00794 | 0.76945 ± 0.01214 | 0.78885 ± 0.00776 | 0.78407 ± 0.02504 | 0.79475 ± 0.02279 | 0.83747 ± 0.00358 | 0.51418 ± 0.00312 | 0.53588 ± 0.02559 | 4,426,201 ± 0.00000 | 43,919,946 ± 0.00000 | 67.72601 ± 1.34755 |
| FeatureWrap | 0.80160 ± 0.01612 | 0.73428 ± 0.01234 | 0.72220 ± 0.01321 | 0.73929 ± 0.00978 | 0.75338 ± 0.02814 | 0.72721 ± 0.02862 | 0.78393 ± 0.01199 | 0.57526 ± 0.01544 | 0.44340 ± 0.02995 | 9,800,161 ± 0.00000 | 333,217,900 ± 0.00000 | 63.76220 ± 1.49083 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.82156 ± 0.01455 | 0.76696 ± 0.00726 | 0.77336 ± 0.00463 | 0.78515 ± 0.00592 | 0.80698 ± 0.00511 | 0.76459 ± 0.01257 | 0.83574 ± 0.00424 | 0.50571 ± 0.00383 | 0.54669 ± 0.00848 | 2,657,889 ± 0.00000 | 809,617,408 ± 160,014,690.16261 | 62.18761 ± 6.29526 |
| IGTD | 0.82278 ± 0.02320 | 0.74884 ± 0.01099 | 0.76909 ± 0.01554 | 0.79588 ± 0.00733 | 0.76581 ± 0.03178 | 0.83016 ± 0.02565 | 0.83846 ± 0.00896 | 0.50748 ± 0.01806 | 0.53493 ± 0.03077 | 5,871,831 ± 0.00000 | 3,481,690,302 ± 305,835,318.37888 | 73.41846 ± 1.17743 |
| REFINED | 0.83413 ± 0.02558 | 0.77016 ± 0.00945 | 0.77620 ± 0.01066 | 0.78976 ± 0.01479 | 0.80488 ± 0.02779 | 0.77770 ± 0.04575 | 0.84131 ± 0.00261 | 0.51031 ± 0.01926 | 0.55282 ± 0.02032 | 5,496,729 ± 0.00000 | 637,718,480 ± 126,040,181.42378 | 85.62639 ± 2.60948 |
| FeatureWrap | 0.83688 ± 0.00904 | 0.76838 ± 0.00937 | 0.78224 ± 0.01070 | 0.79224 ± 0.01093 | 0.81974 ± 0.00857 | 0.76656 ± 0.01340 | 0.83531 ± 0.00602 | 0.50985 ± 0.01106 | 0.56542 ± 0.02094 | 10,885,697 ± 0.00000 | 7,426,666,584 ± 652,366,161.89173 | 83.09175 ± 5.88656 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.76709 ± 0.01971 | 0.69663 ± 0.01091 | 0.70444 ± 0.01650 | 0.75249 ± 0.00673 | 0.69077 ± 0.02870 | 0.82951 ± 0.04423 | 0.75853 ± 0.01253 | 0.58758 ± 0.00870 | 0.40618 ± 0.02840 | 30,369 ± 0.00000 | 6,680,388 ± 0.00000 | 34.07241 ± 0.46630 |
| IGTD | 0.81432 ± 0.10319 | 0.62948 ± 0.02790 | 0.63197 ± 0.08147 | 0.69982 ± 0.03777 | 0.65871 ± 0.10504 | 0.79934 ± 0.19212 | 0.75447 ± 0.03277 | 0.69259 ± 0.11148 | 0.24764 ± 0.19178 | 5,417,457 ± 0.00000 | 978,246,400 ± 0.00000 | 51.55007 ± 1.14411 |
| REFINED | 0.91657 ± 0.04280 | 0.76590 ± 0.01434 | 0.79183 ± 0.01769 | 0.80690 ± 0.01185 | 0.81448 ± 0.04146 | 0.80262 ± 0.04169 | 0.85621 ± 0.00549 | 0.48291 ± 0.01118 | 0.58378 ± 0.03607 | 2,715,313 ± 0.00000 | 1,506,688,896 ± 0.00000 | 56.44847 ± 0.36734 |
| FeatureWrap | 0.85836 ± 0.03730 | 0.73961 ± 0.01788 | 0.73996 ± 0.01592 | 0.75638 ± 0.03293 | 0.76865 ± 0.03896 | 0.75279 ± 0.08763 | 0.80743 ± 0.00882 | 0.54629 ± 0.01841 | 0.48259 ± 0.02264 | 5,155,537 ± 0.00000 | 2,894,869,760 ± 0.00000 | 77.51294 ± 0.31586 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.83718 ± 0.02015 | 0.75489 ± 0.00879 | 0.77869 ± 0.00749 | 0.79065 ± 0.01160 | 0.81068 ± 0.01265 | 0.77246 ± 0.03098 | 0.84023 ± 0.00584 | 0.50143 ± 0.00800 | 0.55757 ± 0.01286 | 1,088,657 ± 0.00000 | 184,719,528 ± 0.00000 | 52.17665 ± 2.32481 |
| IGTD | 0.88541 ± 0.05204 | 0.64192 ± 0.05350 | 0.70764 ± 0.02508 | 0.73493 ± 0.04397 | 0.73387 ± 0.08276 | 0.76656 ± 0.15670 | 0.80774 ± 0.02291 | 0.60415 ± 0.08857 | 0.42959 ± 0.05164 | 6,056,049 ± 0.00000 | 979,523,520 ± 0.00000 | 59.26457 ± 1.49678 |
| REFINED | 0.94271 ± 0.02542 | 0.76696 ± 0.01201 | 0.78686 ± 0.01036 | 0.80513 ± 0.00924 | 0.80144 ± 0.04783 | 0.81443 ± 0.05808 | 0.85253 ± 0.01044 | 0.50015 ± 0.02944 | 0.57440 ± 0.02428 | 3,799,729 ± 0.00000 | 1,508,856,848 ± 0.00000 | 63.84759 ± 1.33045 |
| FeatureWrap | 0.90126 ± 0.03365 | 0.74529 ± 0.00269 | 0.74423 ± 0.00879 | 0.75265 ± 0.02133 | 0.79149 ± 0.03435 | 0.72197 ± 0.06192 | 0.81223 ± 0.01007 | 0.54734 ± 0.02279 | 0.49388 ± 0.01438 | 5,999,569 ± 0.00000 | 2,896,557,568 ± 0.00000 | 81.22601 ± 0.07450 |
Credit-approval
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test ROC AUC (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|
| Trees | CatBoost | 0.88462 ± 0.00000 | 0.94858 ± 0.00155 | 0.88679 ± 0.00000 | 4.35128 ± 0.10240 | — | — |
| MLP | MLP | 0.87692 ± 0.00430 | 0.94468 ± 0.00151 | 0.88363 ± 0.00421 | 6.46258 ± 0.03859 | 27,137 ± 0.00000 | 53,760 ± 0.00000 |
| ViT | FeatureWrap | 0.89808 ± 0.03010 | 0.95735 ± 0.00327 | 0.91357 ± 0.02319 | 24.34938 ± 0.09730 | 7,265,761 ± 0.00000 | 72,676,493 ± 0.00000 |
| ViT+MLP | FeatureWrap | 0.89038 ± 0.01458 | 0.94288 ± 0.00435 | 0.90311 ± 0.01369 | 35.66323 ± 0.36383 | 7,325,569 ± 0.00000 | 3,665,691,148 ± 206,998,807.61424 |
| CNN | FeatureWrap | 0.87885 ± 0.02413 | 0.93966 ± 0.01339 | 0.89497 ± 0.01722 | 21.80783 ± 0.12512 | 1,679,265 ± 0.00000 | 26,047,680 ± 0.00000 |
| CNN+MLP | IGTD | 0.88462 ± 0.00962 | 0.93546 ± 0.01047 | 0.89128 ± 0.00918 | 36.58546 ± 0.15293 | 2,735,457 ± 0.00000 | 26,298,688 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.85300 ± 0.00000 | 0.83495 ± 0.00000 | 0.88462 ± 0.00000 | 0.88679 ± 0.00000 | 0.97917 ± 0.00000 | 0.81034 ± 0.00000 | 0.94858 ± 0.00155 | 0.34290 ± 0.00159 | 0.78567 ± 0.00000 | 4.35128 ± 0.10240 | — | — |
| LightGBM | 0.76232 ± 0.00708 | 0.77087 ± 0.01472 | 0.75577 ± 0.00527 | 0.81780 ± 0.00321 | 0.70027 ± 0.00470 | 0.98276 ± 0.00000 | 0.95064 ± 0.00133 | 0.61286 ± 0.00230 | 0.54471 ± 0.00958 | 0.09859 ± 0.00641 | — | — |
| XGBoost | 0.71801 ± 0.00307 | 0.74757 ± 0.00686 | 0.76154 ± 0.00430 | 0.82133 ± 0.00266 | 0.70546 ± 0.00393 | 0.98276 ± 0.00000 | 0.94910 ± 0.00081 | 0.61517 ± 0.00064 | 0.55518 ± 0.00777 | 0.48363 ± 0.00575 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.88323 ± 0.00185 | 0.84466 ± 0.00000 | 0.87692 ± 0.00430 | 0.88363 ± 0.00421 | 0.93474 ± 0.00934 | 0.83793 ± 0.00944 | 0.94468 ± 0.00151 | 0.29493 ± 0.00127 | 0.75903 ± 0.00888 | 27,137 ± 0.00000 | 53,760 ± 0.00000 | 6.46258 ± 0.03859 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.84679 ± 0.00971 | 0.91068 ± 0.01737 | 0.88654 ± 0.02193 | 0.90270 ± 0.01715 | 0.86791 ± 0.03361 | 0.94138 ± 0.01966 | 0.95165 ± 0.00314 | 0.28738 ± 0.01023 | 0.77210 ± 0.04305 | 1,600,609 ± 0.00000 | 83,777,096 ± 0.00000 | 24.18381 ± 0.14994 |
| IGTD | 0.88447 ± 0.02241 | 0.87767 ± 0.00532 | 0.84423 ± 0.01580 | 0.86430 ± 0.01354 | 0.84125 ± 0.02458 | 0.88965 ± 0.02885 | 0.93426 ± 0.00694 | 0.33153 ± 0.01703 | 0.68444 ± 0.03281 | 19,520,281 ± 0.00000 | 667,902,402 ± 0.00000 | 68.75373 ± 0.10999 |
| REFINED | 0.86460 ± 0.00236 | 0.86796 ± 0.01107 | 0.87500 ± 0.00680 | 0.88368 ± 0.00721 | 0.91834 ± 0.00851 | 0.85172 ± 0.01542 | 0.94468 ± 0.00179 | 0.28699 ± 0.00243 | 0.75166 ± 0.01246 | 5,268,487 ± 0.00000 | 696,741,440 ± 0.00000 | 29.86047 ± 0.45036 |
| DistanceMatrix | 0.86170 ± 0.02108 | 0.87379 ± 0.01373 | 0.86538 ± 0.02150 | 0.87773 ± 0.01787 | 0.89253 ± 0.04424 | 0.86552 ± 0.03316 | 0.94205 ± 0.00545 | 0.29659 ± 0.01014 | 0.73031 ± 0.04643 | 3,595,591 ± 0.00000 | 71,253,567 ± 0.00000 | 28.01472 ± 0.10554 |
| BarGraph | 0.89151 ± 0.00664 | 0.88544 ± 0.02105 | 0.86538 ± 0.01799 | 0.87968 ± 0.01632 | 0.87735 ± 0.02393 | 0.88276 ± 0.02833 | 0.93486 ± 0.00285 | 0.31011 ± 0.01131 | 0.72776 ± 0.03709 | 1,036,999 ± 0.00000 | 20,876,839 ± 0.00000 | 33.32826 ± 2.41426 |
| Combination | 0.88696 ± 0.01339 | 0.87573 ± 0.01064 | 0.86923 ± 0.01874 | 0.88301 ± 0.01423 | 0.88397 ± 0.03368 | 0.88276 ± 0.00771 | 0.93613 ± 0.00461 | 0.31838 ± 0.01974 | 0.73552 ± 0.03934 | 2,364,615 ± 0.00000 | 47,539,495 ± 0.00000 | 43.79120 ± 0.31413 |
| SuperTML | 0.85010 ± 0.02483 | 0.87184 ± 0.02513 | 0.86731 ± 0.01720 | 0.88065 ± 0.00823 | 0.89316 ± 0.06675 | 0.87586 ± 0.06264 | 0.95547 ± 0.00301 | 0.28118 ± 0.00674 | 0.73949 ± 0.03251 | 11,972,449 ± 0.00000 | 1,580,762,012 ± 0.00000 | 55.46818 ± 0.95789 |
| FeatureWrap | 0.84969 ± 0.01540 | 0.91262 ± 0.01535 | 0.89808 ± 0.03010 | 0.91357 ± 0.02319 | 0.87394 ± 0.04923 | 0.95862 ± 0.00944 | 0.95735 ± 0.00327 | 0.26809 ± 0.01913 | 0.79724 ± 0.05758 | 7,265,761 ± 0.00000 | 72,676,493 ± 0.00000 | 24.34938 ± 0.09730 |
| BIE | 0.88282 ± 0.02517 | 0.87767 ± 0.00868 | 0.87308 ± 0.01580 | 0.88563 ± 0.01540 | 0.89001 ± 0.02562 | 0.88276 ± 0.03738 | 0.94678 ± 0.01051 | 0.28848 ± 0.02308 | 0.74448 ± 0.03101 | 1,831,681 ± 0.00000 | 62,989,904 ± 0.00000 | 31.80109 ± 0.45090 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.86211 ± 0.03239 | 0.88350 ± 0.01535 | 0.87308 ± 0.02394 | 0.88714 ± 0.01516 | 0.88942 ± 0.05987 | 0.88965 ± 0.04496 | 0.94145 ± 0.01022 | 0.30223 ± 0.02367 | 0.74784 ± 0.04481 | 2,153,313 ± 0.00000 | 774,421,568 ± 153,058,501.50243 | 36.11794 ± 0.54655 |
| IGTD | 0.90228 ± 0.02078 | 0.86602 ± 0.01990 | 0.85577 ± 0.02255 | 0.86746 ± 0.02201 | 0.88956 ± 0.03197 | 0.84828 ± 0.04463 | 0.93516 ± 0.00514 | 0.32251 ± 0.02280 | 0.71212 ± 0.04505 | 19,548,953 ± 0.00000 | 6,611,922,832 ± 1,306,795,991.39943 | 88.77799 ± 1.40963 |
| REFINED | 0.86335 ± 0.00414 | 0.86019 ± 0.00868 | 0.87692 ± 0.00430 | 0.88408 ± 0.00269 | 0.93162 ± 0.01586 | 0.84138 ± 0.00771 | 0.95052 ± 0.00314 | 0.27924 ± 0.00912 | 0.75825 ± 0.01185 | 5,142,983 ± 0.00000 | 13,348,791,360 ± 1,172,571,797.4438 | 37.56043 ± 0.44217 |
| DistanceMatrix | 0.87371 ± 0.00146 | 0.85437 ± 0.01189 | 0.87308 ± 0.00430 | 0.87775 ± 0.00454 | 0.94842 ± 0.01573 | 0.81724 ± 0.01542 | 0.93883 ± 0.00282 | 0.30097 ± 0.01016 | 0.75654 ± 0.00987 | 3,738,311 ± 0.00000 | 779,787,256 ± 154,118,988.7083 | 33.55061 ± 1.04348 |
| BarGraph | 0.90559 ± 0.01386 | 0.88155 ± 0.01266 | 0.87308 ± 0.01053 | 0.88457 ± 0.00988 | 0.89774 ± 0.01961 | 0.87241 ± 0.02313 | 0.93313 ± 0.00213 | 0.31967 ± 0.01001 | 0.74466 ± 0.02161 | 1,084,551 ± 0.00000 | 803,412,036 ± 45,368,070.23845 | 47.16871 ± 1.24050 |
| Combination | 0.87246 ± 0.01673 | 0.86019 ± 0.02532 | 0.87308 ± 0.00430 | 0.88189 ± 0.00790 | 0.91746 ± 0.03598 | 0.85172 ± 0.04496 | 0.93493 ± 0.00697 | 0.31712 ± 0.01660 | 0.75004 ± 0.00846 | 2,436,903 ± 0.00000 | 527,485,752 ± 104,253,525.60042 | 58.56323 ± 6.61817 |
| SuperTML | 0.87205 ± 0.03957 | 0.86602 ± 0.02105 | 0.86346 ± 0.01850 | 0.87717 ± 0.01091 | 0.88901 ± 0.06413 | 0.87241 ± 0.06047 | 0.93801 ± 0.01346 | 0.30456 ± 0.03170 | 0.73106 ± 0.03564 | 12,460,001 ± 0.00000 | 30,112,373,304 ± 2,645,102,372.0525 | 74.32829 ± 5.53914 |
| FeatureWrap | 0.89317 ± 0.02145 | 0.87961 ± 0.02013 | 0.89038 ± 0.01458 | 0.90311 ± 0.01369 | 0.89089 ± 0.02661 | 0.91724 ± 0.03738 | 0.94288 ± 0.00435 | 0.28508 ± 0.01758 | 0.77931 ± 0.02865 | 7,325,569 ± 0.00000 | 3,665,691,148 ± 206,998,807.61424 | 35.66323 ± 0.36383 |
| BIE | 0.88654 ± 0.00556 | 0.86602 ± 0.01868 | 0.88462 ± 0.00962 | 0.89051 ± 0.00897 | 0.94643 ± 0.02228 | 0.84138 ± 0.01889 | 0.95232 ± 0.00606 | 0.27763 ± 0.01075 | 0.77586 ± 0.02049 | 1,859,585 ± 0.00000 | 1,387,447,200 ± 121,874,813.47842 | 40.93451 ± 0.83433 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.89068 ± 0.01271 | 0.86990 ± 0.02437 | 0.87885 ± 0.01609 | 0.88831 ± 0.01599 | 0.91333 ± 0.01960 | 0.86552 ± 0.03316 | 0.93920 ± 0.00886 | 0.32099 ± 0.02614 | 0.75827 ± 0.03103 | 108,793 ± 0.00000 | 16,313,808 ± 0.00000 | 22.76856 ± 0.21394 |
| IGTD | 0.90393 ± 0.00999 | 0.84272 ± 0.03527 | 0.85577 ± 0.01923 | 0.86486 ± 0.02211 | 0.90302 ± 0.01110 | 0.83103 ± 0.04463 | 0.93861 ± 0.00790 | 0.33714 ± 0.04084 | 0.71460 ± 0.03237 | 2,758,497 ± 0.00000 | 26,344,896 ± 0.00000 | 34.86336 ± 0.12589 |
| REFINED | 0.90104 ± 0.01422 | 0.85049 ± 0.01107 | 0.86731 ± 0.01971 | 0.87678 ± 0.02234 | 0.90918 ± 0.04680 | 0.85172 ± 0.06744 | 0.94318 ± 0.00314 | 0.33025 ± 0.00821 | 0.73999 ± 0.03647 | 2,112,225 ± 0.00000 | 20,382,208 ± 0.00000 | 19.94357 ± 0.08692 |
| DistanceMatrix | 0.87081 ± 0.01041 | 0.88544 ± 0.01266 | 0.85577 ± 0.02150 | 0.87059 ± 0.01765 | 0.87447 ± 0.04377 | 0.86897 ± 0.03575 | 0.94071 ± 0.00797 | 0.30352 ± 0.01824 | 0.71000 ± 0.04691 | 431,553 ± 0.00000 | 321,349,776 ± 0.00000 | 32.35910 ± 2.07113 |
| BarGraph | 0.87743 ± 0.00846 | 0.84854 ± 0.01764 | 0.87115 ± 0.01994 | 0.87950 ± 0.01609 | 0.92317 ± 0.04319 | 0.84138 ± 0.02557 | 0.94483 ± 0.00932 | 0.28156 ± 0.01421 | 0.74679 ± 0.04371 | 189,889 ± 0.00000 | 132,799,648 ± 0.00000 | 24.68416 ± 0.52450 |
| Combination | 0.85756 ± 0.02178 | 0.86990 ± 0.01893 | 0.87692 ± 0.02085 | 0.88591 ± 0.02024 | 0.91658 ± 0.02910 | 0.85862 ± 0.03932 | 0.93801 ± 0.00948 | 0.29441 ± 0.01778 | 0.75576 ± 0.04130 | 1,126,289 ± 0.00000 | 729,226,960 ± 0.00000 | 30.61405 ± 0.78141 |
| SuperTML | 0.86170 ± 0.03083 | 0.87379 ± 0.01942 | 0.85962 ± 0.03160 | 0.87766 ± 0.02171 | 0.86397 ± 0.06470 | 0.89655 ± 0.04043 | 0.93546 ± 0.01064 | 0.31527 ± 0.01634 | 0.71950 ± 0.06294 | 357,681 ± 0.00000 | 244,017,024 ± 0.00000 | 56.27273 ± 1.87451 |
| FeatureWrap | 0.86128 ± 0.02034 | 0.89709 ± 0.03039 | 0.87885 ± 0.02413 | 0.89497 ± 0.01722 | 0.87491 ± 0.06307 | 0.92069 ± 0.04152 | 0.93966 ± 0.01339 | 0.31791 ± 0.03718 | 0.75874 ± 0.05186 | 1,679,265 ± 0.00000 | 26,047,680 ± 0.00000 | 21.80783 ± 0.12512 |
| BIE | 0.99959 ± 0.00093 | 0.89709 ± 0.02437 | 0.82692 ± 0.02040 | 0.85457 ± 0.01417 | 0.80599 ± 0.02899 | 0.91034 ± 0.01889 | 0.90180 ± 0.01179 | 0.49047 ± 0.09350 | 0.65132 ± 0.03901 | 1,219,369 ± 0.00000 | 452,641,280 ± 0.00000 | 23.68857 ± 1.57080 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.86915 ± 0.01415 | 0.86602 ± 0.01440 | 0.86731 ± 0.02489 | 0.87889 ± 0.02100 | 0.89853 ± 0.04504 | 0.86207 ± 0.03448 | 0.93636 ± 0.00426 | 0.30994 ± 0.03336 | 0.73497 ± 0.05269 | 170,793 ± 0.00000 | 16,437,264 ± 0.00000 | 23.51064 ± 1.06906 |
| IGTD | 0.90435 ± 0.00895 | 0.85049 ± 0.01303 | 0.88462 ± 0.00962 | 0.89128 ± 0.00918 | 0.93942 ± 0.01918 | 0.84828 ± 0.01889 | 0.93546 ± 0.01047 | 0.31789 ± 0.02048 | 0.77397 ± 0.02008 | 2,735,457 ± 0.00000 | 26,298,688 ± 0.00000 | 36.58546 ± 0.15293 |
| REFINED | 0.89524 ± 0.00910 | 0.84660 ± 0.01266 | 0.87885 ± 0.00860 | 0.88479 ± 0.00862 | 0.94184 ± 0.01278 | 0.83448 ± 0.01542 | 0.94160 ± 0.00370 | 0.30438 ± 0.00790 | 0.76438 ± 0.01678 | 2,491,169 ± 0.00000 | 21,139,456 ± 0.00000 | 21.89030 ± 0.07673 |
| DistanceMatrix | 0.85632 ± 0.02390 | 0.85243 ± 0.02417 | 0.88077 ± 0.01874 | 0.89164 ± 0.01540 | 0.90919 ± 0.05523 | 0.87931 ± 0.05172 | 0.94430 ± 0.00532 | 0.31482 ± 0.02456 | 0.76424 ± 0.03944 | 488,481 ± 0.00000 | 321,463,144 ± 0.00000 | 35.87942 ± 2.03683 |
| BarGraph | 0.88157 ± 0.01220 | 0.84078 ± 0.01764 | 0.87308 ± 0.01426 | 0.87865 ± 0.01386 | 0.94121 ± 0.01852 | 0.82414 ± 0.01889 | 0.94348 ± 0.00464 | 0.29809 ± 0.00829 | 0.75430 ± 0.02864 | 219,425 ± 0.00000 | 132,858,336 ± 0.00000 | 35.27408 ± 3.46612 |
| Combination | 0.86584 ± 0.02241 | 0.84272 ± 0.01595 | 0.85769 ± 0.02753 | 0.87115 ± 0.02328 | 0.88503 ± 0.05529 | 0.86207 ± 0.05314 | 0.93973 ± 0.00262 | 0.32083 ± 0.02672 | 0.71694 ± 0.05566 | 1,317,009 ± 0.00000 | 15,321,762,960 ± 0.00000 | 49.18553 ± 2.91262 |
| SuperTML | 0.90145 ± 0.03785 | 0.86602 ± 0.02214 | 0.86731 ± 0.00805 | 0.88339 ± 0.00958 | 0.86725 ± 0.03440 | 0.90345 ± 0.05115 | 0.93666 ± 0.00719 | 0.33066 ± 0.02660 | 0.73433 ± 0.01701 | 441,649 ± 0.00000 | 244,184,512 ± 0.00000 | 56.67473 ± 4.74708 |
| FeatureWrap | 0.88654 ± 0.01184 | 0.86214 ± 0.02318 | 0.87115 ± 0.00860 | 0.87876 ± 0.00864 | 0.92557 ± 0.03114 | 0.83793 ± 0.03132 | 0.94408 ± 0.00311 | 0.29397 ± 0.01804 | 0.74744 ± 0.01996 | 1,775,201 ± 0.00000 | 26,239,200 ± 0.00000 | 23.54730 ± 0.12061 |
| BIE | 0.97971 ± 0.02833 | 0.87573 ± 0.00812 | 0.85385 ± 0.02085 | 0.87046 ± 0.01693 | 0.86260 ± 0.03206 | 0.87931 ± 0.02112 | 0.92144 ± 0.01176 | 0.35882 ± 0.03894 | 0.70393 ± 0.04291 | 1,475,625 ± 0.00000 | 453,152,896 ± 0.00000 | 26.65689 ± 1.21066 |
Dengue chikunguya bin
Source: Mendeley Data
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test ROC AUC (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|
| Trees | CatBoost | 0.77381 ± 0.00152 | 0.84859 ± 0.00078 | 0.76203 ± 0.00216 | 18.33763 ± 0.20578 | — | — |
| MLP | MLP | 0.75250 ± 0.00428 | 0.82654 ± 0.00162 | 0.73198 ± 0.00265 | 32.29673 ± 0.16948 | 49,665 ± 0.00000 | 98,944 ± 0.00000 |
| ViT | SuperTML | 0.76519 ± 0.00515 | 0.83537 ± 0.00185 | 0.75174 ± 0.00573 | 1,542.52599 ± 158.45189 | 3,580,129 ± 0.00000 | 57,361,400,250.6 ± 116,728,731,983.64003 |
| ViT+MLP | SuperTML | 0.76356 ± 0.00603 | 0.83214 ± 0.00350 | 0.74648 ± 0.00806 | 1,777.37847 ± 255.34242 | 3,795,105 ± 0.00000 | 1,011,732,695,367.59998 ± 2,196,801,926,319.54199 |
| CNN | SuperTML | 0.76496 ± 0.00412 | 0.83152 ± 0.00320 | 0.75360 ± 0.00620 | 1,431.14861 ± 148.66043 | 655,073 ± 0.00000 | 58,837,451,833.6 ± 128,193,210,627.53494 |
| CNN+MLP | SuperTML | 0.76577 ± 0.00374 | 0.83457 ± 0.00086 | 0.75967 ± 0.00213 | 1,488.9573 ± 134.62188 | 718,977 ± 0.00000 | 26,027,278,931.2 ± 40,624,508,189.80072 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.84445 ± 0.00445 | 0.79685 ± 0.00350 | 0.77381 ± 0.00152 | 0.76203 ± 0.00216 | 0.80388 ± 0.00192 | 0.72433 ± 0.00431 | 0.84859 ± 0.00078 | 0.48129 ± 0.00036 | 0.55032 ± 0.00287 | 18.33763 ± 0.20578 | — | — |
| LightGBM | 0.82621 ± 0.00128 | 0.79476 ± 0.00146 | 0.76601 ± 0.00567 | 0.75396 ± 0.00664 | 0.79484 ± 0.00538 | 0.71711 ± 0.00887 | 0.84481 ± 0.00028 | 0.48559 ± 0.00063 | 0.53459 ± 0.01116 | 0.66354 ± 0.06674 | — | — |
| XGBoost | 0.84830 ± 0.00055 | 0.79080 ± 0.00096 | 0.77055 ± 0.00133 | 0.75896 ± 0.00132 | 0.79934 ± 0.00258 | 0.72247 ± 0.00241 | 0.85063 ± 0.00045 | 0.47857 ± 0.00069 | 0.54362 ± 0.00277 | 1.87975 ± 0.05041 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.79361 ± 0.00407 | 0.78626 ± 0.00193 | 0.75250 ± 0.00428 | 0.73198 ± 0.00265 | 0.79837 ± 0.01122 | 0.67590 ± 0.00556 | 0.82654 ± 0.00162 | 0.52665 ± 0.01087 | 0.51113 ± 0.01005 | 49,665 ± 0.00000 | 98,944 ± 0.00000 | 32.29673 ± 0.16948 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.78670 ± 0.00351 | 0.77787 ± 0.00525 | 0.75215 ± 0.00440 | 0.73795 ± 0.00382 | 0.78317 ± 0.01386 | 0.69802 ± 0.01425 | 0.82601 ± 0.00283 | 0.51071 ± 0.00549 | 0.50754 ± 0.00993 | 37,861,015 ± 0.00000 | 1,293,369,808 ± 0.00000 | 411.74121 ± 0.77761 |
| IGTD | 0.79044 ± 0.00466 | 0.78439 ± 0.00581 | 0.75367 ± 0.00289 | 0.73667 ± 0.00502 | 0.79174 ± 0.01661 | 0.68941 ± 0.02047 | 0.82431 ± 0.00290 | 0.51494 ± 0.00502 | 0.51201 ± 0.00780 | 4,190,743 ± 0.00000 | 78,083,135 ± 0.00000 | 121.39114 ± 0.81683 |
| REFINED | 0.79436 ± 0.00477 | 0.78626 ± 0.00184 | 0.75786 ± 0.00519 | 0.73684 ± 0.00985 | 0.80677 ± 0.00859 | 0.67846 ± 0.02067 | 0.82813 ± 0.00187 | 0.50985 ± 0.00669 | 0.52256 ± 0.00842 | 7,342,369 ± 0.00000 | 73,412,898 ± 0.00000 | 237.12990 ± 1.57417 |
| DistanceMatrix | 0.79483 ± 0.00728 | 0.78451 ± 0.00250 | 0.75926 ± 0.00249 | 0.74453 ± 0.00775 | 0.79344 ± 0.01756 | 0.70221 ± 0.02597 | 0.82720 ± 0.00331 | 0.51223 ± 0.00760 | 0.52250 ± 0.00606 | 13,839,809 ± 0.00000 | 135,836,308 ± 0.00000 | 280.96291 ± 5.19273 |
| BarGraph | 0.79546 ± 0.00396 | 0.78684 ± 0.00442 | 0.76216 ± 0.00383 | 0.74587 ± 0.00265 | 0.80087 ± 0.00926 | 0.69802 ± 0.00470 | 0.83119 ± 0.00293 | 0.51191 ± 0.00573 | 0.52876 ± 0.00867 | 3,948,545 ± 0.00000 | 37,579,600 ± 0.00000 | 102.67005 ± 0.95858 |
| Combination | 0.79391 ± 0.00334 | 0.78579 ± 0.00223 | 0.75867 ± 0.00346 | 0.74347 ± 0.00374 | 0.79352 ± 0.00676 | 0.69942 ± 0.00705 | 0.82984 ± 0.00273 | 0.50759 ± 0.00658 | 0.52106 ± 0.00722 | 26,974,465 ± 0.00000 | 80,410,966,806 ± 176,895,483,141.79083 | 1,163.32768 ± 262.76441 |
| SuperTML | 0.79558 ± 0.00533 | 0.78870 ± 0.00437 | 0.76519 ± 0.00515 | 0.75174 ± 0.00573 | 0.79756 ± 0.01036 | 0.71106 ± 0.01154 | 0.83537 ± 0.00185 | 0.50311 ± 0.00267 | 0.53364 ± 0.01077 | 3,580,129 ± 0.00000 | 57,361,400,250.6 ± 116,728,731,983.64003 | 1,542.52599 ± 158.45189 |
| FeatureWrap | 0.77636 ± 0.00341 | 0.76622 ± 0.00370 | 0.73842 ± 0.00550 | 0.71831 ± 0.00799 | 0.77822 ± 0.01116 | 0.66729 ± 0.01702 | 0.81591 ± 0.00189 | 0.52766 ± 0.00519 | 0.48193 ± 0.01103 | 9,475,609 ± 0.00000 | 329,832,766,077.59998 ± 721,087,062,859.04285 | 459.02159 ± 129.85201 |
| BIE | 0.80192 ± 0.00874 | 0.78381 ± 0.00577 | 0.76252 ± 0.00123 | 0.75060 ± 0.00198 | 0.79025 ± 0.00376 | 0.71479 ± 0.00570 | 0.82890 ± 0.00235 | 0.50835 ± 0.00301 | 0.52746 ± 0.00251 | 16,484,193 ± 0.00000 | 2,471,681,549,289.6001 ± 5,428,955,286,813.38867 | 1,305.07611 ± 303.07968 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.79638 ± 0.00401 | 0.78486 ± 0.00367 | 0.75506 ± 0.00161 | 0.73767 ± 0.00403 | 0.79426 ± 0.01143 | 0.68894 ± 0.01490 | 0.82593 ± 0.00241 | 0.52127 ± 0.00595 | 0.51486 ± 0.00463 | 38,117,399 ± 0.00000 | 429,126,782,022.40002 ± 934,424,394,897.82361 | 1,300.61963 ± 320.98518 |
| IGTD | 0.79910 ± 0.00335 | 0.78486 ± 0.00456 | 0.75623 ± 0.00312 | 0.73737 ± 0.00728 | 0.79927 ± 0.01021 | 0.68475 ± 0.01876 | 0.82426 ± 0.00154 | 0.52813 ± 0.00397 | 0.51801 ± 0.00523 | 4,122,519 ± 0.00000 | 33,085,208,539.6 ± 70,040,658,830.16013 | 610.68185 ± 172.91366 |
| REFINED | 0.79286 ± 0.00469 | 0.78497 ± 0.00199 | 0.75635 ± 0.00290 | 0.74048 ± 0.00257 | 0.79211 ± 0.00645 | 0.69523 ± 0.00503 | 0.82637 ± 0.00128 | 0.51844 ± 0.00432 | 0.51660 ± 0.00630 | 7,393,185 ± 0.00000 | 66,861,683,869.6 ± 142,595,257,258.11005 | 1,116.93216 ± 318.84188 |
| DistanceMatrix | 0.79391 ± 0.00264 | 0.78812 ± 0.00262 | 0.75669 ± 0.00214 | 0.73828 ± 0.00191 | 0.79889 ± 0.00951 | 0.68638 ± 0.00919 | 0.82638 ± 0.00133 | 0.52348 ± 0.00401 | 0.51865 ± 0.00561 | 14,030,369 ± 0.00000 | 735,078,836,909.59998 ± 1,623,592,589,055.5498 | 1,398.96918 ± 401.01450 |
| BarGraph | 0.80155 ± 0.00745 | 0.78893 ± 0.00360 | 0.76275 ± 0.00320 | 0.74863 ± 0.00609 | 0.79620 ± 0.01265 | 0.70687 ± 0.01843 | 0.83142 ± 0.00322 | 0.51920 ± 0.00647 | 0.52910 ± 0.00669 | 4,180,033 ± 0.00000 | 26,258,935,508.8 ± 54,578,732,372.61453 | 541.91954 ± 149.32681 |
| Combination | 0.79311 ± 0.00439 | 0.78660 ± 0.00356 | 0.75413 ± 0.00252 | 0.73493 ± 0.00231 | 0.79741 ± 0.01073 | 0.68172 ± 0.01033 | 0.82560 ± 0.00200 | 0.52567 ± 0.00832 | 0.51382 ± 0.00655 | 27,468,833 ± 0.00000 | 1,025,750,154,648.40002 ± 2,246,662,723,183.00537 | 1,776.51478 ± 517.27827 |
| SuperTML | 0.79923 ± 0.00855 | 0.78975 ± 0.00578 | 0.76356 ± 0.00603 | 0.74648 ± 0.00806 | 0.80467 ± 0.01058 | 0.69639 ± 0.01576 | 0.83214 ± 0.00350 | 0.50869 ± 0.00323 | 0.53211 ± 0.01183 | 3,795,105 ± 0.00000 | 1,011,732,695,367.59998 ± 2,196,801,926,319.54199 | 1,777.37847 ± 255.34242 |
| FeatureWrap | 0.79666 ± 0.00211 | 0.78742 ± 0.00229 | 0.75565 ± 0.00215 | 0.73703 ± 0.00621 | 0.79812 ± 0.01516 | 0.68522 ± 0.02017 | 0.82669 ± 0.00224 | 0.52503 ± 0.00428 | 0.51682 ± 0.00571 | 9,617,049 ± 0.00000 | 845,407,410,135.19995 ± 1,807,053,346,291.28271 | 808.30747 ± 277.02514 |
| BIE | 0.79705 ± 0.00581 | 0.78649 ± 0.00200 | 0.76042 ± 0.00275 | 0.74338 ± 0.00327 | 0.80036 ± 0.00689 | 0.69406 ± 0.00787 | 0.82845 ± 0.00135 | 0.51385 ± 0.00368 | 0.52555 ± 0.00591 | 16,286,753 ± 0.00000 | 8,700,046,055,998.40039 ± 19,108,366,057,049.83203 | 2,496.42857 ± 811.76486 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.78343 ± 0.00358 | 0.77472 ± 0.00317 | 0.75483 ± 0.00398 | 0.73756 ± 0.00460 | 0.79378 ± 0.01417 | 0.68917 ± 0.01544 | 0.82661 ± 0.00163 | 0.50848 ± 0.00248 | 0.51438 ± 0.00927 | 55,209 ± 0.00000 | 21,066,396,060.8 ± 33,262,000,708.4252 | 445.48115 ± 141.94076 |
| IGTD | 0.79121 ± 0.00452 | 0.78381 ± 0.00483 | 0.75472 ± 0.00525 | 0.73541 ± 0.00795 | 0.79818 ± 0.00664 | 0.68196 ± 0.01462 | 0.82477 ± 0.00422 | 0.51912 ± 0.00610 | 0.51500 ± 0.00967 | 1,726,097 ± 0.00000 | 35,408,168,048 ± 35,082,886,876.55688 | 770.37093 ± 265.31412 |
| REFINED | 0.79441 ± 0.00464 | 0.78392 ± 0.00285 | 0.75623 ± 0.00245 | 0.73979 ± 0.00437 | 0.79327 ± 0.00312 | 0.69313 ± 0.00919 | 0.82636 ± 0.00202 | 0.51456 ± 0.00652 | 0.51663 ± 0.00421 | 594,577 ± 0.00000 | 6,874,985,318.4 ± 10,840,271,169.55768 | 487.88913 ± 171.38286 |
| DistanceMatrix | 0.79528 ± 0.00807 | 0.78544 ± 0.00433 | 0.75448 ± 0.00728 | 0.73550 ± 0.00727 | 0.79721 ± 0.00999 | 0.68265 ± 0.00543 | 0.82276 ± 0.00141 | 0.52153 ± 0.00638 | 0.51431 ± 0.01502 | 47,329 ± 0.00000 | 125,413,487,040 ± 271,898,806,184.23105 | 696.09263 ± 221.51648 |
| BarGraph | 0.79818 ± 0.00615 | 0.78987 ± 0.00593 | 0.76112 ± 0.00766 | 0.74644 ± 0.00810 | 0.79567 ± 0.01647 | 0.70338 ± 0.01720 | 0.82965 ± 0.00462 | 0.50822 ± 0.00744 | 0.52604 ± 0.01620 | 1,246,593 ± 0.00000 | 143,853,906,534.39999 ± 267,314,456,779.50229 | 633.02015 ± 197.07502 |
| Combination | 0.79860 ± 0.00783 | 0.78952 ± 0.00182 | 0.76228 ± 0.00208 | 0.74667 ± 0.00537 | 0.79974 ± 0.01894 | 0.70105 ± 0.02342 | 0.83534 ± 0.00297 | 0.50503 ± 0.00498 | 0.52912 ± 0.00709 | 2,743,089 ± 0.00000 | 2,051,088,364,646.3999 ± 2,762,851,296,694.4126 | 711.06372 ± 197.85187 |
| SuperTML | 0.80142 ± 0.01416 | 0.78672 ± 0.00486 | 0.76496 ± 0.00412 | 0.75360 ± 0.00620 | 0.79230 ± 0.01688 | 0.71921 ± 0.02202 | 0.83152 ± 0.00320 | 0.51131 ± 0.01168 | 0.53263 ± 0.00931 | 655,073 ± 0.00000 | 58,837,451,833.6 ± 128,193,210,627.53494 | 1,431.14861 ± 148.66043 |
| FeatureWrap | 0.78507 ± 0.00438 | 0.77729 ± 0.00564 | 0.75448 ± 0.00457 | 0.73475 ± 0.00605 | 0.79935 ± 0.01627 | 0.68033 ± 0.01825 | 0.83036 ± 0.00136 | 0.50838 ± 0.00352 | 0.51501 ± 0.01073 | 26,873 ± 0.00000 | 670,474,232.8 ± 1,478,111,954.598 | 448.96570 ± 144.08506 |
| BIE | 0.78545 ± 0.00776 | 0.77822 ± 0.00735 | 0.75681 ± 0.00601 | 0.74026 ± 0.01121 | 0.79517 ± 0.02488 | 0.69406 ± 0.03449 | 0.82411 ± 0.00330 | 0.51322 ± 0.00500 | 0.51876 ± 0.01317 | 193,937 ± 0.00000 | 46,562,342,956.8 ± 101,317,122,478.31845 | 415.89008 ± 111.37664 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.79107 ± 0.00604 | 0.78125 ± 0.00421 | 0.75378 ± 0.00288 | 0.73228 ± 0.00313 | 0.80264 ± 0.01313 | 0.67357 ± 0.01314 | 0.82741 ± 0.00180 | 0.51278 ± 0.00632 | 0.51445 ± 0.00766 | 101,369 ± 0.00000 | 26,112,851,500.8 ± 56,223,615,942.36392 | 971.35377 ± 362.51331 |
| IGTD | 0.79743 ± 0.00296 | 0.78521 ± 0.00312 | 0.75320 ± 0.00632 | 0.73411 ± 0.00798 | 0.79558 ± 0.00554 | 0.68149 ± 0.01085 | 0.82428 ± 0.00306 | 0.51631 ± 0.00464 | 0.51171 ± 0.01223 | 1,742,513 ± 0.00000 | 84,773,405,875.2 ± 180,144,694,113.31934 | 1,624.47672 ± 618.84157 |
| REFINED | 0.79406 ± 0.00469 | 0.78206 ± 0.00437 | 0.75530 ± 0.00363 | 0.74004 ± 0.00273 | 0.78950 ± 0.01164 | 0.69662 ± 0.01030 | 0.82496 ± 0.00171 | 0.51333 ± 0.00362 | 0.51430 ± 0.00852 | 561,681 ± 0.00000 | 27,897,250,105.6 ± 59,931,665,658.70679 | 1,050.63638 ± 415.65452 |
| DistanceMatrix | 0.79296 ± 0.00719 | 0.78521 ± 0.00283 | 0.75693 ± 0.00360 | 0.73848 ± 0.00666 | 0.79912 ± 0.00710 | 0.68661 ± 0.01519 | 0.82477 ± 0.00161 | 0.52366 ± 0.00957 | 0.51914 ± 0.00630 | 107,201 ± 0.00000 | 241,645,307,878.39999 ± 519,791,690,920.10126 | 1,505.36997 ± 552.96056 |
| BarGraph | 0.80369 ± 0.00690 | 0.78789 ± 0.00649 | 0.76216 ± 0.00485 | 0.74884 ± 0.00624 | 0.79328 ± 0.00614 | 0.70920 ± 0.01096 | 0.83155 ± 0.00393 | 0.51126 ± 0.00697 | 0.52735 ± 0.00942 | 1,427,457 ± 0.00000 | 252,727,262,233.60001 ± 383,167,868,958.26599 | 1,434.95774 ± 526.65822 |
| Combination | 0.79481 ± 0.00555 | 0.78707 ± 0.00252 | 0.75658 ± 0.00865 | 0.74753 ± 0.00485 | 0.77841 ± 0.03227 | 0.72107 ± 0.03290 | 0.83076 ± 0.00301 | 0.51186 ± 0.00723 | 0.51589 ± 0.01978 | 3,186,481 ± 0.00000 | 4,843,369,695,616 ± 9,427,791,887,179.02344 | 1,489.01224 ± 502.87907 |
| SuperTML | 0.80574 ± 0.00960 | 0.78824 ± 0.00360 | 0.76577 ± 0.00374 | 0.75967 ± 0.00213 | 0.78027 ± 0.01195 | 0.74040 ± 0.01138 | 0.83457 ± 0.00086 | 0.51056 ± 0.00307 | 0.53242 ± 0.00816 | 718,977 ± 0.00000 | 26,027,278,931.2 ± 40,624,508,189.80072 | 1,488.9573 ± 134.62188 |
| FeatureWrap | 0.79226 ± 0.00438 | 0.78428 ± 0.00360 | 0.75390 ± 0.00374 | 0.73731 ± 0.00473 | 0.79057 ± 0.00329 | 0.69080 ± 0.00682 | 0.82511 ± 0.00417 | 0.52476 ± 0.00502 | 0.51190 ± 0.00722 | 86,425 ± 0.00000 | 631,268,136.8 ± 1,356,648,401.3246 | 515.40748 ± 169.17345 |
| BIE | 0.79411 ± 0.00909 | 0.78020 ± 0.00547 | 0.75728 ± 0.00359 | 0.75194 ± 0.00170 | 0.76904 ± 0.00980 | 0.73574 ± 0.00823 | 0.82298 ± 0.00244 | 0.51584 ± 0.00373 | 0.51514 ± 0.00761 | 283,089 ± 0.00000 | 64,517,300,620.8 ± 116,024,731,895.8228 | 510.11104 ± 144.47312 |
Nomao
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test ROC AUC (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|
| Trees | XGBoost | 0.97033 ± 0.00082 | 0.99467 ± 0.00018 | 0.97926 ± 0.00057 | 7.27351 ± 0.40088 | — | — |
| MLP | MLP | 0.95722 ± 0.00156 | 0.98967 ± 0.00032 | 0.97009 ± 0.00101 | 104.73531 ± 8.62000 | 77,825 ± 0.00000 | 155,264 ± 0.00000 |
| ViT | BarGraph | 0.96317 ± 0.00115 | 0.99197 ± 0.00024 | 0.97428 ± 0.00080 | 1,823.59621 ± 426.87652 | 14,940,295 ± 0.00000 | 2,729,093,792.8 ± 1,098,676,695.40115 |
| ViT+MLP | BIE | 0.96174 ± 0.00318 | 0.99145 ± 0.00079 | 0.97328 ± 0.00219 | 2,028.60861 ± 450.41631 | 19,834,905 ± 0.00000 | 212,099,541,471.20001 ± 466,396,281,712.28033 |
| CNN | Combination | 0.96414 ± 0.00246 | 0.99320 ± 0.00053 | 0.97496 ± 0.00162 | 4,090.50706 ± 372.66968 | 377,657 ± 0.00000 | 200,661,199,420.79999 ± 382,097,593,437.39655 |
| CNN+MLP | BIE | 0.96549 ± 0.00095 | 0.99383 ± 0.00052 | 0.97591 ± 0.00063 | 5,218.75606 ± 376.15809 | 4,943,209 ± 0.00000 | 263,538,065,689.60001 ± 148,660,074,826.40341 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.99959 ± 0.00013 | 0.96882 ± 0.00116 | 0.96866 ± 0.00072 | 0.97813 ± 0.00049 | 0.97534 ± 0.00120 | 0.98094 ± 0.00059 | 0.99455 ± 0.00018 | 0.09178 ± 0.00200 | 0.92294 ± 0.00183 | 88.42585 ± 12.09318 | — | — |
| LightGBM | 0.99996 ± 0.00000 | 0.96805 ± 0.00193 | 0.96905 ± 0.00168 | 0.97838 ± 0.00116 | 0.97643 ± 0.00203 | 0.98034 ± 0.00113 | 0.99446 ± 0.00027 | 0.12653 ± 0.00491 | 0.92397 ± 0.00418 | 2.86195 ± 0.74265 | — | — |
| XGBoost | 0.99996 ± 0.00000 | 0.97010 ± 0.00068 | 0.97033 ± 0.00082 | 0.97926 ± 0.00057 | 0.97796 ± 0.00083 | 0.98056 ± 0.00052 | 0.99467 ± 0.00018 | 0.16116 ± 0.00164 | 0.92717 ± 0.00202 | 7.27351 ± 0.40088 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.96946 ± 0.00181 | 0.95756 ± 0.00172 | 0.95722 ± 0.00156 | 0.97009 ± 0.00101 | 0.96886 ± 0.00418 | 0.97135 ± 0.00280 | 0.98967 ± 0.00032 | 0.11633 ± 0.00227 | 0.89502 ± 0.00424 | 77,825 ± 0.00000 | 155,264 ± 0.00000 | 104.73531 ± 8.62000 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.97018 ± 0.00175 | 0.95687 ± 0.00081 | 0.95408 ± 0.00145 | 0.96789 ± 0.00101 | 0.96703 ± 0.00287 | 0.96875 ± 0.00292 | 0.98818 ± 0.00027 | 0.12876 ± 0.00093 | 0.88738 ± 0.00360 | 20,832,601 ± 0.00000 | 321,724,384,026 ± 716,693,138,158.28979 | 479.35578 ± 132.34694 |
| IGTD | 0.96877 ± 0.00318 | 0.95609 ± 0.00148 | 0.95578 ± 0.00156 | 0.96893 ± 0.00109 | 0.97269 ± 0.00456 | 0.96523 ± 0.00454 | 0.98976 ± 0.00027 | 0.12060 ± 0.00220 | 0.89244 ± 0.00394 | 8,016,295 ± 0.00000 | 88,810,592,350 ± 196,489,694,368.91821 | 600.93735 ± 184.65323 |
| REFINED | 0.96974 ± 0.00262 | 0.95772 ± 0.00111 | 0.95776 ± 0.00143 | 0.97049 ± 0.00100 | 0.96852 ± 0.00309 | 0.97249 ± 0.00322 | 0.98975 ± 0.00041 | 0.11840 ± 0.00182 | 0.89624 ± 0.00352 | 6,170,215 ± 0.00000 | 48,069,892,848 ± 105,475,890,018.72287 | 273.23154 ± 93.66160 |
| DistanceMatrix | 0.97232 ± 0.00226 | 0.95830 ± 0.00156 | 0.95737 ± 0.00127 | 0.97011 ± 0.00085 | 0.97162 ± 0.00419 | 0.96864 ± 0.00385 | 0.98982 ± 0.00042 | 0.11436 ± 0.00176 | 0.89586 ± 0.00339 | 16,916,857 ± 0.00000 | 1,216,917,828,593.6001 ± 2,701,838,061,539.17529 | 2,003.17204 ± 442.38300 |
| BarGraph | 0.97770 ± 0.00259 | 0.96449 ± 0.00203 | 0.96317 ± 0.00115 | 0.97428 ± 0.00080 | 0.97193 ± 0.00220 | 0.97666 ± 0.00223 | 0.99197 ± 0.00024 | 0.10877 ± 0.00460 | 0.90949 ± 0.00285 | 14,940,295 ± 0.00000 | 2,729,093,792.8 ± 1,098,676,695.40115 | 1,823.59621 ± 426.87652 |
| Combination | 0.97471 ± 0.00235 | 0.96023 ± 0.00056 | 0.96054 ± 0.00141 | 0.97245 ± 0.00109 | 0.96991 ± 0.00366 | 0.97503 ± 0.00555 | 0.99146 ± 0.00036 | 0.10849 ± 0.00274 | 0.90309 ± 0.00299 | 18,955,015 ± 0.00000 | 324,311,687,748 ± 713,970,915,190.3125 | 1,817.10348 ± 424.34665 |
| SuperTML | 0.97414 ± 0.00229 | 0.95841 ± 0.00204 | 0.95834 ± 0.00202 | 0.97089 ± 0.00146 | 0.96906 ± 0.00417 | 0.97276 ± 0.00523 | 0.99021 ± 0.00054 | 0.11509 ± 0.00448 | 0.89774 ± 0.00483 | 29,687,425 ± 0.00000 | 463,065,373,002 ± 1,015,639,501,982.69202 | 2,317.6447 ± 598.48675 |
| FeatureWrap | 0.97463 ± 0.00264 | 0.95636 ± 0.00154 | 0.95385 ± 0.00159 | 0.96762 ± 0.00122 | 0.96977 ± 0.00259 | 0.96550 ± 0.00477 | 0.98942 ± 0.00042 | 0.12179 ± 0.00311 | 0.88739 ± 0.00324 | 16,593,433 ± 0.00000 | 14,186,899,825,777.59961 ± 31,523,326,885,631.57422 | 1,375.22182 ± 14.61001 |
| BIE | 0.98038 ± 0.00657 | 0.96012 ± 0.00249 | 0.96220 ± 0.00140 | 0.97368 ± 0.00093 | 0.96879 ± 0.00501 | 0.97866 ± 0.00451 | 0.99136 ± 0.00068 | 0.11296 ± 0.00429 | 0.90692 ± 0.00362 | 20,518,873 ± 0.00000 | 2,295,861,428.8 ± 466,543,598.43117 | 1,999.65134 ± 400.40337 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.96094 ± 0.00271 | 0.95079 ± 0.00089 | 0.94747 ± 0.00184 | 0.96252 ± 0.00136 | 0.98126 ± 0.00051 | 0.94449 ± 0.00249 | 0.98923 ± 0.00024 | 0.12866 ± 0.00120 | 0.87660 ± 0.00397 | 20,912,345 ± 0.00000 | 436,665,245,037.59998 ± 967,978,549,623.35474 | 536.51636 ± 122.00153 |
| IGTD | 0.95842 ± 0.00634 | 0.94770 ± 0.00439 | 0.94329 ± 0.00944 | 0.95929 ± 0.00722 | 0.98297 ± 0.00406 | 0.93691 ± 0.01733 | 0.98902 ± 0.00050 | 0.14727 ± 0.01828 | 0.86909 ± 0.01782 | 8,088,999 ± 0.00000 | 311,650,190,566.79999 ± 691,053,745,412.88818 | 609.21402 ± 184.93126 |
| REFINED | 0.95933 ± 0.00639 | 0.94553 ± 0.00425 | 0.94186 ± 0.00468 | 0.95825 ± 0.00360 | 0.98317 ± 0.00290 | 0.93463 ± 0.00926 | 0.98882 ± 0.00034 | 0.14336 ± 0.00848 | 0.86582 ± 0.00863 | 5,523,431 ± 0.00000 | 290,250,234,344.40002 ± 643,963,128,523.54883 | 310.17079 ± 98.09055 |
| DistanceMatrix | 0.96324 ± 0.00296 | 0.95249 ± 0.00219 | 0.95025 ± 0.00191 | 0.96463 ± 0.00141 | 0.97989 ± 0.00109 | 0.94985 ± 0.00285 | 0.98928 ± 0.00047 | 0.13087 ± 0.00376 | 0.88208 ± 0.00417 | 16,829,369 ± 0.00000 | 3,244,725,476.8 ± 614,858,240.92529 | 2,092.59517 ± 441.59267 |
| BarGraph | 0.97189 ± 0.00509 | 0.95783 ± 0.00473 | 0.95486 ± 0.00401 | 0.96791 ± 0.00305 | 0.98262 ± 0.00345 | 0.95370 ± 0.00890 | 0.99149 ± 0.00041 | 0.12608 ± 0.01130 | 0.89311 ± 0.00773 | 15,036,711 ± 0.00000 | 5,859,842,658.4 ± 1,105,429,326.47811 | 1,871.91148 ± 411.84487 |
| Combination | 0.97631 ± 0.00380 | 0.96116 ± 0.00233 | 0.96108 ± 0.00115 | 0.97288 ± 0.00092 | 0.96838 ± 0.00441 | 0.97747 ± 0.00597 | 0.99197 ± 0.00021 | 0.11065 ± 0.00206 | 0.90424 ± 0.00238 | 19,034,759 ± 0.00000 | 14,574,778,889 ± 29,109,194,669.32748 | 1,889.06406 ± 414.40158 |
| SuperTML | 0.97175 ± 0.00231 | 0.96039 ± 0.00149 | 0.95745 ± 0.00219 | 0.97026 ± 0.00148 | 0.96872 ± 0.00491 | 0.97184 ± 0.00394 | 0.99026 ± 0.00038 | 0.11335 ± 0.00316 | 0.89557 ± 0.00561 | 28,886,721 ± 0.00000 | 4,418,466,958 ± 2,306,385,594.11359 | 2,432.58342 ± 602.41558 |
| FeatureWrap | 0.96767 ± 0.00320 | 0.95787 ± 0.00098 | 0.95729 ± 0.00131 | 0.97018 ± 0.00091 | 0.96770 ± 0.00375 | 0.97271 ± 0.00381 | 0.98966 ± 0.00036 | 0.11717 ± 0.00241 | 0.89505 ± 0.00335 | 16,689,785 ± 0.00000 | 10,110,585,872,880.80078 ± 22,502,629,053,303.78906 | 1,459.74151 ± 16.63757 |
| BIE | 0.97529 ± 0.00112 | 0.96039 ± 0.00146 | 0.96174 ± 0.00318 | 0.97328 ± 0.00219 | 0.97107 ± 0.00413 | 0.97552 ± 0.00271 | 0.99145 ± 0.00079 | 0.10494 ± 0.00498 | 0.90599 ± 0.00798 | 19,834,905 ± 0.00000 | 212,099,541,471.20001 ± 466,396,281,712.28033 | 2,028.60861 ± 450.41631 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.97399 ± 0.00341 | 0.95791 ± 0.00113 | 0.95834 ± 0.00131 | 0.97091 ± 0.00090 | 0.96850 ± 0.00407 | 0.97335 ± 0.00402 | 0.98945 ± 0.00015 | 0.11745 ± 0.00177 | 0.89763 ± 0.00339 | 4,824,641 ± 0.00000 | 934,910,685,593.59998 ± 1,951,421,727,771.86011 | 248.10662 ± 49.49744 |
| IGTD | 0.97955 ± 0.00127 | 0.95872 ± 0.00176 | 0.94619 ± 0.00992 | 0.96205 ± 0.00776 | 0.96697 ± 0.01112 | 0.95770 ± 0.02445 | 0.98718 ± 0.00128 | 0.14034 ± 0.02637 | 0.87079 ± 0.01815 | 1,189,033 ± 0.00000 | 45,912,542,356.8 ± 100,013,680,314.8199 | 229.56258 ± 75.03398 |
| REFINED | 0.97595 ± 0.00309 | 0.95733 ± 0.00159 | 0.96027 ± 0.00180 | 0.97231 ± 0.00119 | 0.96823 ± 0.00414 | 0.97644 ± 0.00276 | 0.99061 ± 0.00057 | 0.11056 ± 0.00417 | 0.90217 ± 0.00466 | 5,396,049 ± 0.00000 | 347,208,752,755.20001 ± 436,028,655,509.88867 | 271.48560 ± 87.74921 |
| DistanceMatrix | 0.98507 ± 0.00388 | 0.96220 ± 0.00180 | 0.95996 ± 0.00270 | 0.97201 ± 0.00194 | 0.97062 ± 0.00553 | 0.97346 ± 0.00678 | 0.99125 ± 0.00093 | 0.11265 ± 0.00536 | 0.90186 ± 0.00639 | 2,551,521 ± 0.00000 | 2,950,933,827,148.7998 ± 5,449,995,671,441.93066 | 7,836.87877 ± 368.73048 |
| BarGraph | 0.99080 ± 0.00983 | 0.96437 ± 0.00295 | 0.96174 ± 0.00237 | 0.97326 ± 0.00174 | 0.97158 ± 0.00309 | 0.97498 ± 0.00542 | 0.99228 ± 0.00074 | 0.10184 ± 0.00637 | 0.90612 ± 0.00545 | 2,700,657 ± 0.00000 | 135,052,239,059.2 ± 83,035,178,316.82898 | 2,877.01942 ± 392.42460 |
| Combination | 0.99160 ± 0.00358 | 0.96499 ± 0.00184 | 0.96414 ± 0.00246 | 0.97496 ± 0.00162 | 0.97297 ± 0.00605 | 0.97698 ± 0.00371 | 0.99320 ± 0.00053 | 0.09610 ± 0.00439 | 0.91196 ± 0.00645 | 377,657 ± 0.00000 | 200,661,199,420.79999 ± 382,097,593,437.39655 | 4,090.50706 ± 372.66968 |
| SuperTML | 0.99957 ± 0.00062 | 0.96913 ± 0.00188 | 0.96371 ± 0.00144 | 0.97466 ± 0.00102 | 0.97246 ± 0.00288 | 0.97688 ± 0.00331 | 0.99325 ± 0.00021 | 0.09397 ± 0.00214 | 0.91086 ± 0.00350 | 3,470,009 ± 0.00000 | 225,938,498,278.39999 ± 51,363,290,437.87039 | 5,664.23751 ± 603.52141 |
| FeatureWrap | 0.98454 ± 0.00460 | 0.95992 ± 0.00153 | 0.95532 ± 0.00118 | 0.96885 ± 0.00082 | 0.96508 ± 0.00214 | 0.97265 ± 0.00198 | 0.98911 ± 0.00030 | 0.11883 ± 0.00177 | 0.88998 ± 0.00298 | 2,675,753 ± 0.00000 | 615,941,707,929.59998 ± 1,234,939,973,572.32837 | 247.36853 ± 73.54608 |
| BIE | 0.99947 ± 0.00036 | 0.96778 ± 0.00294 | 0.96325 ± 0.00301 | 0.97436 ± 0.00211 | 0.97121 ± 0.00565 | 0.97758 ± 0.00614 | 0.99305 ± 0.00082 | 0.10405 ± 0.00443 | 0.90972 ± 0.00734 | 4,865,385 ± 0.00000 | 82,842,842,886.39999 ± 19,048,789,357.48722 | 5,278.22185 ± 377.79029 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.96902 ± 0.00397 | 0.95741 ± 0.00181 | 0.95536 ± 0.00228 | 0.96878 ± 0.00161 | 0.96780 ± 0.00309 | 0.96978 ± 0.00382 | 0.98840 ± 0.00122 | 0.12401 ± 0.00645 | 0.89050 ± 0.00552 | 4,944,961 ± 0.00000 | 1,009,951,291,769.59998 ± 2,250,904,739,374.57715 | 292.18680 ± 68.75808 |
| IGTD | 0.97907 ± 0.00356 | 0.95911 ± 0.00166 | 0.95222 ± 0.00260 | 0.96665 ± 0.00162 | 0.96425 ± 0.00779 | 0.96913 ± 0.00525 | 0.98833 ± 0.00069 | 0.12705 ± 0.00520 | 0.88267 ± 0.00725 | 1,176,537 ± 0.00000 | 34,373,092,035.2 ± 74,197,311,611.16965 | 289.74496 ± 97.68266 |
| REFINED | 0.98069 ± 0.00354 | 0.96043 ± 0.00074 | 0.96066 ± 0.00107 | 0.97250 ± 0.00067 | 0.97115 ± 0.00492 | 0.97390 ± 0.00422 | 0.99099 ± 0.00039 | 0.11247 ± 0.00182 | 0.90349 ± 0.00302 | 4,991,057 ± 0.00000 | 687,744,956,620.80005 ± 983,491,552,191.08459 | 351.81945 ± 118.21687 |
| DistanceMatrix | 0.98581 ± 0.00299 | 0.96298 ± 0.00188 | 0.96182 ± 0.00117 | 0.97329 ± 0.00083 | 0.97284 ± 0.00545 | 0.97379 ± 0.00574 | 0.99216 ± 0.00067 | 0.10285 ± 0.00299 | 0.90652 ± 0.00298 | 2,481,313 ± 0.00000 | 39,888,640,966,214.39844 ± 87,267,777,539,044.9375 | 7,832.55724 ± 364.07442 |
| BarGraph | 0.99333 ± 0.00371 | 0.96518 ± 0.00120 | 0.96356 ± 0.00130 | 0.97455 ± 0.00090 | 0.97247 ± 0.00366 | 0.97666 ± 0.00370 | 0.99210 ± 0.00042 | 0.10200 ± 0.00418 | 0.91051 ± 0.00330 | 2,778,481 ± 0.00000 | 192,841,363,641.60001 ± 60,978,589,927.0471 | 2,880.8014 ± 398.38785 |
| Combination | 0.99374 ± 0.00233 | 0.96735 ± 0.00228 | 0.96503 ± 0.00104 | 0.97554 ± 0.00074 | 0.97470 ± 0.00547 | 0.97644 ± 0.00579 | 0.99383 ± 0.00047 | 0.09629 ± 0.00476 | 0.91435 ± 0.00259 | 455,481 ± 0.00000 | 129,644,373,555.2 ± 42,081,651,568.24149 | 4,018.11123 ± 361.36135 |
| SuperTML | 0.99523 ± 0.00204 | 0.96665 ± 0.00138 | 0.96062 ± 0.00211 | 0.97262 ± 0.00134 | 0.96623 ± 0.00643 | 0.97915 ± 0.00429 | 0.99199 ± 0.00060 | 0.10162 ± 0.00422 | 0.90289 ± 0.00558 | 3,560,793 ± 0.00000 | 751,565,383,718.40002 ± 241,897,377,555.09045 | 5,590.31739 ± 596.28220 |
| FeatureWrap | 0.98241 ± 0.00236 | 0.95954 ± 0.00085 | 0.95563 ± 0.00122 | 0.96896 ± 0.00085 | 0.96842 ± 0.00220 | 0.96951 ± 0.00220 | 0.98960 ± 0.00047 | 0.11845 ± 0.00304 | 0.89121 ± 0.00304 | 3,016,233 ± 0.00000 | 1,111,128,403,916.80005 ± 2,458,531,738,437.63916 | 489.89216 ± 177.26971 |
| BIE | 0.99982 ± 0.00012 | 0.96921 ± 0.00111 | 0.96549 ± 0.00095 | 0.97591 ± 0.00063 | 0.97355 ± 0.00259 | 0.97828 ± 0.00178 | 0.99383 ± 0.00052 | 0.09316 ± 0.00474 | 0.91519 ± 0.00252 | 4,943,209 ± 0.00000 | 263,538,065,689.60001 ± 148,660,074,826.40341 | 5,218.75606 ± 376.15809 |
Preprocessed heloc
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test ROC AUC (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|
| Trees | XGBoost | 0.73153 ± 0.00194 | 0.79220 ± 0.00038 | 0.71321 ± 0.00245 | 1.21999 ± 0.03794 | — | — |
| MLP | MLP | 0.71924 ± 0.00300 | 0.78686 ± 0.00112 | 0.70771 ± 0.00251 | 27.11040 ± 3.04776 | 275,457 ± 0.00000 | 549,888 ± 0.00000 |
| ViT | BarGraph | 0.72856 ± 0.00239 | 0.78951 ± 0.00144 | 0.71816 ± 0.00207 | 140.40542 ± 0.97042 | 8,749,441 ± 0.00000 | 170,357,984 ± 0.00000 |
| ViT+MLP | REFINED | 0.72613 ± 0.00148 | 0.78765 ± 0.00110 | 0.71400 ± 0.00383 | 307.87920 ± 5.66926 | 16,578,023 ± 0.00000 | 7,724,505,912 ± 1,526,689,530.08476 |
| CNN | REFINED | 0.72451 ± 0.00327 | 0.78669 ± 0.00416 | 0.70942 ± 0.01123 | 165.31761 ± 0.96082 | 796,041 ± 0.00000 | 14,232,096 ± 0.00000 |
| CNN+MLP | DistanceMatrix | 0.72330 ± 0.00193 | 0.78443 ± 0.00149 | 0.71380 ± 0.00481 | 81.03928 ± 1.43009 | 1,442,697 ± 0.00000 | 177,865,984 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 0.81534 ± 0.00123 | 0.71452 ± 0.00187 | 0.73018 ± 0.00155 | 0.71293 ± 0.00111 | 0.72758 ± 0.00279 | 0.69887 ± 0.00154 | 0.79083 ± 0.00025 | 0.55470 ± 0.00032 | 0.45894 ± 0.00310 | 12.60065 ± 0.80073 | — | — |
| LightGBM | 0.81080 ± 0.00145 | 0.71938 ± 0.00140 | 0.72964 ± 0.00322 | 0.71334 ± 0.00345 | 0.72539 ± 0.00349 | 0.70169 ± 0.00365 | 0.78875 ± 0.00157 | 0.55797 ± 0.00217 | 0.45789 ± 0.00647 | 1.06779 ± 0.02788 | — | — |
| XGBoost | 0.80266 ± 0.00124 | 0.71533 ± 0.00037 | 0.73153 ± 0.00194 | 0.71321 ± 0.00245 | 0.73093 ± 0.00165 | 0.69634 ± 0.00339 | 0.79220 ± 0.00038 | 0.55225 ± 0.00045 | 0.46162 ± 0.00391 | 1.21999 ± 0.03794 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.74086 ± 0.00411 | 0.70939 ± 0.00346 | 0.71924 ± 0.00300 | 0.70771 ± 0.00251 | 0.70657 ± 0.00763 | 0.70901 ± 0.01038 | 0.78686 ± 0.00112 | 0.55979 ± 0.00170 | 0.43772 ± 0.00560 | 275,457 ± 0.00000 | 549,888 ± 0.00000 | 27.11040 ± 3.04776 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.73189 ± 0.00614 | 0.71060 ± 0.00194 | 0.70385 ± 0.00423 | 0.69168 ± 0.00179 | 0.69073 ± 0.01107 | 0.69296 ± 0.01306 | 0.77142 ± 0.00198 | 0.57640 ± 0.00316 | 0.40697 ± 0.00786 | 3,652,951 ± 0.00000 | 126,416,850 ± 0.00000 | 246.38582 ± 7.80233 |
| REFINED | 0.74723 ± 0.00783 | 0.72046 ± 0.00419 | 0.72167 ± 0.00303 | 0.70543 ± 0.01166 | 0.71610 ± 0.01037 | 0.69606 ± 0.03166 | 0.78639 ± 0.00293 | 0.56040 ± 0.00353 | 0.44248 ± 0.00641 | 16,030,983 ± 0.00000 | 835,827,367 ± 0.00000 | 239.63486 ± 0.81967 |
| DistanceMatrix | 0.75009 ± 0.00436 | 0.71182 ± 0.00495 | 0.72303 ± 0.00530 | 0.71035 ± 0.00855 | 0.71273 ± 0.01586 | 0.70901 ± 0.02836 | 0.78008 ± 0.00409 | 0.56678 ± 0.00424 | 0.44561 ± 0.01073 | 11,227,553 ± 0.00000 | 112,114,696 ± 0.00000 | 232.46146 ± 1.59433 |
| BarGraph | 0.74949 ± 0.00270 | 0.71816 ± 0.00200 | 0.72856 ± 0.00239 | 0.71816 ± 0.00207 | 0.71505 ± 0.00609 | 0.72141 ± 0.00824 | 0.78951 ± 0.00144 | 0.55943 ± 0.00256 | 0.45648 ± 0.00441 | 8,749,441 ± 0.00000 | 170,357,984 ± 0.00000 | 140.40542 ± 0.97042 |
| Combination | 0.74370 ± 0.00339 | 0.72019 ± 0.00390 | 0.72424 ± 0.00340 | 0.70820 ± 0.01185 | 0.71976 ± 0.02327 | 0.69944 ± 0.04327 | 0.78571 ± 0.00210 | 0.56378 ± 0.00389 | 0.44850 ± 0.00622 | 22,121,113 ± 0.00000 | 731,558,160 ± 0.00000 | 265.40014 ± 1.80066 |
| SuperTML | 0.74462 ± 0.00302 | 0.71573 ± 0.00253 | 0.71222 ± 0.00415 | 0.70539 ± 0.01196 | 0.69297 ± 0.01381 | 0.71972 ± 0.03696 | 0.78436 ± 0.00283 | 0.56604 ± 0.00366 | 0.42549 ± 0.00844 | 4,226,689 ± 0.00000 | 34,953,804 ± 0.00000 | 294.30081 ± 4.58905 |
| FeatureWrap | 0.73070 ± 0.00743 | 0.69602 ± 0.00967 | 0.68602 ± 0.01163 | 0.60964 ± 0.03549 | 0.75465 ± 0.02510 | 0.51465 ± 0.05618 | 0.75080 ± 0.00370 | 0.60916 ± 0.01238 | 0.38279 ± 0.01778 | 7,621,953 ± 0.00000 | 74,702,240 ± 0.00000 | 198.13757 ± 1.54118 |
| BIE | 0.74323 ± 0.00552 | 0.70993 ± 0.00401 | 0.70939 ± 0.00418 | 0.69029 ± 0.00876 | 0.70647 ± 0.01856 | 0.67634 ± 0.03403 | 0.77499 ± 0.00432 | 0.57229 ± 0.00477 | 0.41803 ± 0.00763 | 21,504,097 ± 0.00000 | 718,141,612 ± 0.00000 | 275.59880 ± 0.41604 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.75018 ± 0.00550 | 0.71168 ± 0.00559 | 0.71965 ± 0.00329 | 0.70459 ± 0.00475 | 0.71195 ± 0.00474 | 0.69747 ± 0.01008 | 0.78619 ± 0.00211 | 0.56072 ± 0.00448 | 0.43803 ± 0.00659 | 4,365,975 ± 0.00000 | 1,260,800,912 ± 249,187,659.8711 | 271.84837 ± 4.91254 |
| IGTD | 0.74842 ± 0.00453 | 0.71249 ± 0.00535 | 0.72330 ± 0.00318 | 0.71260 ± 0.01017 | 0.71039 ± 0.01906 | 0.71662 ± 0.03720 | 0.78636 ± 0.00235 | 0.56076 ± 0.00270 | 0.44690 ± 0.00519 | 3,802,695 ± 0.00000 | 3,641,537,502 ± 319,876,463.64556 | 124.45561 ± 1.42195 |
| REFINED | 0.74792 ± 0.00437 | 0.72073 ± 0.00289 | 0.72613 ± 0.00148 | 0.71400 ± 0.00383 | 0.71500 ± 0.00683 | 0.71324 ± 0.01386 | 0.78765 ± 0.00110 | 0.56077 ± 0.00337 | 0.45142 ± 0.00275 | 16,578,023 ± 0.00000 | 7,724,505,912 ± 1,526,689,530.08476 | 307.87920 ± 5.66926 |
| DistanceMatrix | 0.74321 ± 0.00476 | 0.70993 ± 0.00393 | 0.72046 ± 0.00282 | 0.70510 ± 0.00890 | 0.71420 ± 0.02035 | 0.69803 ± 0.03661 | 0.78704 ± 0.00253 | 0.55945 ± 0.00222 | 0.44063 ± 0.00487 | 11,758,017 ± 0.00000 | 1,613,907,008 ± 318,976,379.81172 | 271.26229 ± 3.63171 |
| BarGraph | 0.74596 ± 0.00200 | 0.71600 ± 0.00264 | 0.72262 ± 0.00585 | 0.71318 ± 0.00632 | 0.70727 ± 0.00958 | 0.71944 ± 0.01431 | 0.78838 ± 0.00196 | 0.55868 ± 0.00227 | 0.44489 ± 0.01145 | 8,791,489 ± 0.00000 | 1,906,052,864 ± 376,716,774.43295 | 161.77120 ± 3.03141 |
| Combination | 0.74902 ± 0.00614 | 0.71789 ± 0.00307 | 0.72059 ± 0.00417 | 0.71308 ± 0.00592 | 0.70250 ± 0.01088 | 0.72451 ± 0.02052 | 0.78417 ± 0.00110 | 0.56429 ± 0.00147 | 0.44146 ± 0.00785 | 21,657,369 ± 0.00000 | 7,228,835,456 ± 1,428,724,054.47137 | 319.35856 ± 3.76759 |
| SuperTML | 0.75261 ± 0.00692 | 0.71708 ± 0.00165 | 0.72167 ± 0.00175 | 0.71055 ± 0.01137 | 0.70912 ± 0.01758 | 0.71380 ± 0.03915 | 0.79104 ± 0.00086 | 0.55705 ± 0.00184 | 0.44362 ± 0.00298 | 4,795,617 ± 0.00000 | 716,128,920 ± 62,905,513.48657 | 294.52168 ± 10.56306 |
| FeatureWrap | 0.75148 ± 0.00220 | 0.71479 ± 0.00429 | 0.72194 ± 0.00288 | 0.70130 ± 0.01050 | 0.72330 ± 0.01384 | 0.68169 ± 0.03108 | 0.78393 ± 0.00221 | 0.56229 ± 0.00166 | 0.44295 ± 0.00534 | 7,847,297 ± 0.00000 | 1,075,005,824 ± 212,466,681.36163 | 240.10630 ± 3.00511 |
| BIE | 0.75198 ± 0.00303 | 0.71182 ± 0.00267 | 0.71830 ± 0.00406 | 0.70325 ± 0.00526 | 0.71089 ± 0.01528 | 0.69662 ± 0.02377 | 0.78720 ± 0.00330 | 0.56055 ± 0.00316 | 0.43577 ± 0.00746 | 21,382,337 ± 0.00000 | 7,077,399,136 ± 1,398,793,823.74174 | 340.72954 ± 5.72634 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.73852 ± 0.00634 | 0.71249 ± 0.00620 | 0.70749 ± 0.00639 | 0.69137 ± 0.00852 | 0.69972 ± 0.01131 | 0.68366 ± 0.01986 | 0.77448 ± 0.00169 | 0.57122 ± 0.00149 | 0.41381 ± 0.01271 | 278,225 ± 0.00000 | 37,160,128 ± 0.00000 | 113.83074 ± 3.59936 |
| IGTD | 0.71573 ± 0.00507 | 0.52384 ± 0.00876 | 0.60230 ± 0.05338 | 0.31990 ± 0.18837 | 0.83421 ± 0.01942 | 0.21493 ± 0.14625 | 0.76311 ± 0.00692 | 0.66649 ± 0.00670 | 0.25297 ± 0.10909 | 1,356,865 ± 0.00000 | 24,724,160 ± 0.00000 | 63.25363 ± 0.26247 |
| REFINED | 0.75296 ± 0.00231 | 0.71708 ± 0.00435 | 0.72451 ± 0.00327 | 0.70942 ± 0.01123 | 0.71803 ± 0.01686 | 0.70254 ± 0.03596 | 0.78669 ± 0.00416 | 0.56117 ± 0.00429 | 0.44858 ± 0.00721 | 796,041 ± 0.00000 | 14,232,096 ± 0.00000 | 165.31761 ± 0.96082 |
| DistanceMatrix | 0.74703 ± 0.00930 | 0.71425 ± 0.00425 | 0.72073 ± 0.00613 | 0.70170 ± 0.01133 | 0.71945 ± 0.01534 | 0.68592 ± 0.03149 | 0.78406 ± 0.00406 | 0.56305 ± 0.00668 | 0.44055 ± 0.01177 | 1,149,929 ± 0.00000 | 177,281,304 ± 0.00000 | 75.59714 ± 0.54278 |
| BarGraph | 0.75985 ± 0.01265 | 0.71209 ± 0.00511 | 0.71519 ± 0.01434 | 0.69929 ± 0.02890 | 0.70812 ± 0.02192 | 0.69465 ± 0.06668 | 0.78234 ± 0.00528 | 0.57148 ± 0.01425 | 0.43118 ± 0.02807 | 4,560,465 ± 0.00000 | 698,342,656 ± 0.00000 | 128.64228 ± 4.40663 |
| Combination | 0.74876 ± 0.00342 | 0.71695 ± 0.00495 | 0.72113 ± 0.00534 | 0.70105 ± 0.01535 | 0.72117 ± 0.01167 | 0.68338 ± 0.03849 | 0.78389 ± 0.00117 | 0.56961 ± 0.00628 | 0.44144 ± 0.01061 | 3,038,273 ± 0.00000 | 475,324,672 ± 0.00000 | 96.89109 ± 1.28411 |
| SuperTML | 0.76008 ± 0.00571 | 0.72762 ± 0.00297 | 0.71735 ± 0.00627 | 0.70117 ± 0.00717 | 0.71105 ± 0.01018 | 0.69183 ± 0.01515 | 0.78645 ± 0.00309 | 0.55941 ± 0.00324 | 0.43344 ± 0.01240 | 536,857 ± 0.00000 | 448,495,408 ± 0.00000 | 392.56344 ± 14.20557 |
| FeatureWrap | 0.73229 ± 0.01224 | 0.69372 ± 0.00913 | 0.68589 ± 0.02771 | 0.61307 ± 0.08937 | 0.74655 ± 0.04798 | 0.54000 ± 0.14382 | 0.75923 ± 0.00959 | 0.60747 ± 0.01968 | 0.38426 ± 0.03925 | 411,345 ± 0.00000 | 7,647,744 ± 0.00000 | 79.77829 ± 0.69233 |
| BIE | 0.75021 ± 0.01039 | 0.70587 ± 0.00798 | 0.70709 ± 0.00667 | 0.67746 ± 0.02397 | 0.71782 ± 0.02007 | 0.64479 ± 0.05931 | 0.77332 ± 0.00357 | 0.57550 ± 0.00433 | 0.41450 ± 0.01299 | 341,729 ± 0.00000 | 206,823,744 ± 0.00000 | 136.01211 ± 0.56600 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.74624 ± 0.00889 | 0.71222 ± 0.00801 | 0.71344 ± 0.00636 | 0.70164 ± 0.00976 | 0.70162 ± 0.02283 | 0.70394 ± 0.04204 | 0.77794 ± 0.00491 | 0.57164 ± 0.00532 | 0.42742 ± 0.01158 | 651,793 ± 0.00000 | 37,905,920 ± 0.00000 | 140.01672 ± 15.43977 |
| IGTD | 0.71452 ± 0.00546 | 0.52221 ± 0.00322 | 0.57583 ± 0.06515 | 0.21285 ± 0.24229 | 0.69059 ± 0.38899 | 0.14620 ± 0.17598 | 0.76697 ± 0.00577 | 0.66653 ± 0.00731 | 0.17729 ± 0.15261 | 1,762,881 ± 0.00000 | 25,535,168 ± 0.00000 | 68.83911 ± 0.24535 |
| REFINED | 0.74584 ± 0.00558 | 0.71735 ± 0.00624 | 0.71911 ± 0.00874 | 0.70675 ± 0.01204 | 0.70749 ± 0.01084 | 0.70648 ± 0.02383 | 0.78634 ± 0.00521 | 0.56240 ± 0.00557 | 0.43749 ± 0.01754 | 1,255,689 ± 0.00000 | 15,150,144 ± 0.00000 | 165.45272 ± 0.39471 |
| DistanceMatrix | 0.75565 ± 0.00816 | 0.71101 ± 0.00460 | 0.72330 ± 0.00193 | 0.71380 ± 0.00481 | 0.70810 ± 0.00876 | 0.72000 ± 0.01862 | 0.78443 ± 0.00149 | 0.56410 ± 0.00153 | 0.44634 ± 0.00346 | 1,442,697 ± 0.00000 | 177,865,984 ± 0.00000 | 81.03928 ± 1.43009 |
| BarGraph | 0.76289 ± 0.00613 | 0.71344 ± 0.00897 | 0.71992 ± 0.00582 | 0.70786 ± 0.01256 | 0.70807 ± 0.01222 | 0.70873 ± 0.03290 | 0.78508 ± 0.00268 | 0.56360 ± 0.00460 | 0.43951 ± 0.01190 | 4,625,681 ± 0.00000 | 698,472,704 ± 0.00000 | 132.94448 ± 3.62290 |
| Combination | 0.75548 ± 0.00365 | 0.71654 ± 0.00216 | 0.71789 ± 0.00636 | 0.70241 ± 0.01238 | 0.71114 ± 0.01823 | 0.69549 ± 0.03671 | 0.78277 ± 0.00465 | 0.56702 ± 0.00543 | 0.43534 ± 0.01221 | 3,103,489 ± 0.00000 | 475,454,720 ± 0.00000 | 106.05786 ± 5.47090 |
| SuperTML | 0.75554 ± 0.00903 | 0.71816 ± 0.00418 | 0.71978 ± 0.00274 | 0.70065 ± 0.00937 | 0.71852 ± 0.01520 | 0.68479 ± 0.03070 | 0.78556 ± 0.00343 | 0.56152 ± 0.00433 | 0.43866 ± 0.00577 | 820,377 ± 0.00000 | 449,061,536 ± 0.00000 | 385.57753 ± 17.30651 |
| FeatureWrap | 0.75843 ± 0.01048 | 0.70817 ± 0.00572 | 0.71236 ± 0.00795 | 0.68095 ± 0.02661 | 0.72714 ± 0.01910 | 0.64366 ± 0.05901 | 0.77364 ± 0.00599 | 0.57601 ± 0.01118 | 0.42524 ± 0.01285 | 979,889 ± 0.00000 | 8,783,488 ± 0.00000 | 82.89502 ± 0.41953 |
| BIE | 0.75554 ± 0.01022 | 0.70952 ± 0.00401 | 0.71951 ± 0.00599 | 0.69518 ± 0.01190 | 0.72585 ± 0.01362 | 0.66789 ± 0.02955 | 0.78493 ± 0.00434 | 0.56597 ± 0.00839 | 0.43807 ± 0.01232 | 592,481 ± 0.00000 | 207,324,416 ± 0.00000 | 139.29321 ± 0.56451 |
Qsar-biodeg
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test ROC AUC (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|
| Trees | CatBoost | 0.84528 ± 0.00954 | 0.90328 ± 0.00679 | 0.77345 ± 0.01441 | 2.07775 ± 0.02123 | — | — |
| MLP | MLP | 0.81384 ± 0.01699 | 0.90547 ± 0.00199 | 0.71227 ± 0.04256 | 7.07626 ± 0.03709 | 76,801 ± 0.00000 | 153,088 ± 0.00000 |
| ViT | Combination | 0.85031 ± 0.00689 | 0.91933 ± 0.00531 | 0.78288 ± 0.01555 | 35.89860 ± 0.99466 | 11,376,727 ± 0.00000 | 111,112,224 ± 0.00000 |
| ViT+MLP | Combination | 0.85535 ± 0.01722 | 0.91799 ± 0.00117 | 0.78944 ± 0.02817 | 43.58147 ± 1.86796 | 11,315,031 ± 0.00000 | 3,535,396,992 ± 310,552,970.21189 |
| CNN | REFINED | 0.85031 ± 0.01434 | 0.90589 ± 0.01199 | 0.77998 ± 0.02926 | 25.17825 ± 0.46305 | 9,909,553 ± 0.00000 | 340,932,336 ± 0.00000 |
| CNN+MLP | REFINED | 0.85912 ± 0.01052 | 0.90952 ± 0.00963 | 0.79213 ± 0.02105 | 27.31155 ± 1.94910 | 9,784,689 ± 0.00000 | 340,682,640 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 1.00000 ± 0.00000 | 0.84937 ± 0.00825 | 0.84528 ± 0.00954 | 0.77345 ± 0.01441 | 0.76930 ± 0.01419 | 0.77778 ± 0.01852 | 0.90328 ± 0.00679 | 0.68418 ± 0.02481 | 0.65608 ± 0.02144 | 2.07775 ± 0.02123 | — | — |
| LightGBM | 0.99594 ± 0.00096 | 0.85190 ± 0.00566 | 0.83899 ± 0.00954 | 0.76035 ± 0.01288 | 0.76912 ± 0.01746 | 0.75185 ± 0.01014 | 0.89986 ± 0.00490 | 0.41587 ± 0.00885 | 0.63928 ± 0.02045 | 0.42185 ± 0.01293 | — | — |
| XGBoost | 0.99837 ± 0.00061 | 0.86456 ± 0.00722 | 0.83899 ± 0.00345 | 0.76536 ± 0.01024 | 0.75775 ± 0.01263 | 0.77407 ± 0.03043 | 0.90197 ± 0.00668 | 0.46418 ± 0.02441 | 0.64342 ± 0.01095 | 0.36044 ± 0.01231 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.88347 ± 0.00991 | 0.84304 ± 0.01812 | 0.81384 ± 0.01699 | 0.71227 ± 0.04256 | 0.74727 ± 0.02097 | 0.68519 ± 0.08385 | 0.90547 ± 0.00199 | 0.36894 ± 0.00316 | 0.57886 ± 0.04706 | 76,801 ± 0.00000 | 153,088 ± 0.00000 | 7.07626 ± 0.03709 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.91138 ± 0.02023 | 0.84810 ± 0.01733 | 0.81887 ± 0.02197 | 0.71728 ± 0.03638 | 0.76268 ± 0.03440 | 0.67778 ± 0.04648 | 0.89160 ± 0.00666 | 0.43290 ± 0.03698 | 0.58735 ± 0.05142 | 677,719 ± 0.00000 | 23,443,743 ± 0.00000 | 29.58682 ± 0.30404 |
| IGTD | 0.66260 ± 0.00000 | 0.66456 ± 0.00000 | 0.66038 ± 0.00000 | 0.00000 ± 0.00000 | 0.00000 ± 0.00000 | 0.00000 ± 0.00000 | 0.50000 ± 0.00000 | 0.64079 ± 0.00000 | 0.00000 ± 0.00000 | 19,943,815 ± 0.00000 | 2,020,915,039 ± 0.00000 | 61.29744 ± 0.30382 |
| REFINED | 0.92222 ± 0.02092 | 0.84304 ± 0.00825 | 0.83648 ± 0.02476 | 0.75538 ± 0.03627 | 0.77030 ± 0.05212 | 0.74444 ± 0.05617 | 0.89901 ± 0.00300 | 0.42438 ± 0.04314 | 0.63457 ± 0.05425 | 10,065,543 ± 0.00000 | 1,013,835,391 ± 0.00000 | 40.20941 ± 1.32542 |
| DistanceMatrix | 0.88889 ± 0.01597 | 0.85316 ± 0.00693 | 0.80629 ± 0.02057 | 0.70298 ± 0.02562 | 0.73682 ± 0.05021 | 0.67407 ± 0.03099 | 0.90148 ± 0.01580 | 0.38558 ± 0.02197 | 0.56191 ± 0.04381 | 11,380,375 ± 0.00000 | 4,682,747,412 ± 0.00000 | 112.79609 ± 0.10942 |
| BarGraph | 0.90786 ± 0.01845 | 0.84684 ± 0.02255 | 0.84151 ± 0.02197 | 0.76166 ± 0.04362 | 0.77426 ± 0.01207 | 0.75185 ± 0.07476 | 0.90833 ± 0.00608 | 0.40301 ± 0.02131 | 0.64441 ± 0.05562 | 17,078,137 ± 0.00000 | 332,845,900 ± 0.00000 | 56.28975 ± 2.26031 |
| Combination | 0.92439 ± 0.01280 | 0.87342 ± 0.01343 | 0.85031 ± 0.00689 | 0.78288 ± 0.01555 | 0.77149 ± 0.01774 | 0.79630 ± 0.04141 | 0.91933 ± 0.00531 | 0.38932 ± 0.03501 | 0.66980 ± 0.01812 | 11,376,727 ± 0.00000 | 111,112,224 ± 0.00000 | 35.89860 ± 0.99466 |
| SuperTML | 0.89295 ± 0.02247 | 0.84557 ± 0.01650 | 0.80503 ± 0.01938 | 0.71044 ± 0.05840 | 0.71352 ± 0.02496 | 0.71852 ± 0.11814 | 0.87637 ± 0.00247 | 0.44840 ± 0.02651 | 0.56902 ± 0.05827 | 23,309,025 ± 0.00000 | 202,703,164 ± 0.00000 | 50.94762 ± 0.65236 |
| FeatureWrap | 0.85312 ± 0.00860 | 0.80886 ± 0.00530 | 0.76352 ± 0.03003 | 0.59579 ± 0.05415 | 0.71116 ± 0.06438 | 0.51482 ± 0.06198 | 0.84804 ± 0.02000 | 0.47564 ± 0.02456 | 0.44718 ± 0.07381 | 2,478,817 ± 0.00000 | 24,855,412 ± 0.00000 | 26.06886 ± 0.06475 |
| BIE | 0.88889 ± 0.01472 | 0.83418 ± 0.02300 | 0.80629 ± 0.02105 | 0.70658 ± 0.04614 | 0.72470 ± 0.02195 | 0.69259 ± 0.07922 | 0.89704 ± 0.00955 | 0.40296 ± 0.01374 | 0.56418 ± 0.05600 | 5,306,497 ± 0.00000 | 180,026,090 ± 0.00000 | 18.89083 ± 0.42705 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.89485 ± 0.01734 | 0.84304 ± 0.02948 | 0.82893 ± 0.01210 | 0.73164 ± 0.02632 | 0.78197 ± 0.01673 | 0.68889 ± 0.04793 | 0.89908 ± 0.00510 | 0.41228 ± 0.01391 | 0.61026 ± 0.03068 | 789,431 ± 0.00000 | 234,662,968 ± 46,379,341.33595 | 35.02912 ± 0.62252 |
| IGTD | 0.89756 ± 0.00618 | 0.86203 ± 0.00530 | 0.83145 ± 0.02328 | 0.74401 ± 0.04415 | 0.76464 ± 0.01701 | 0.72593 ± 0.06854 | 0.90638 ± 0.00330 | 0.36973 ± 0.00881 | 0.61976 ± 0.05779 | 19,841,031 ± 0.00000 | 17,493,490,936 ± 3,457,454,724.07943 | 68.65184 ± 0.32894 |
| REFINED | 0.92114 ± 0.02938 | 0.84810 ± 0.02146 | 0.84906 ± 0.02311 | 0.77265 ± 0.03966 | 0.78935 ± 0.03173 | 0.75926 ± 0.06677 | 0.89968 ± 0.00773 | 0.42395 ± 0.03069 | 0.66142 ± 0.05399 | 10,381,671 ± 0.00000 | 19,727,353,710 ± 1,732,871,386.98258 | 52.78226 ± 3.35506 |
| DistanceMatrix | 0.89377 ± 0.01043 | 0.86203 ± 0.01372 | 0.82767 ± 0.01757 | 0.74353 ± 0.02920 | 0.75177 ± 0.03060 | 0.73704 ± 0.04793 | 0.90356 ± 0.01117 | 0.39109 ± 0.02854 | 0.61471 ± 0.04150 | 11,647,287 ± 0.00000 | 38,262,608,032 ± 7,562,311,912.4608 | 117.23654 ± 0.77614 |
| BarGraph | 0.92629 ± 0.01210 | 0.86456 ± 0.01150 | 0.82138 ± 0.02206 | 0.72968 ± 0.04916 | 0.74668 ± 0.01975 | 0.71852 ± 0.09388 | 0.90406 ± 0.00769 | 0.42141 ± 0.02693 | 0.59939 ± 0.05981 | 17,072,217 ± 0.00000 | 12,966,251,088 ± 732,194,395.56636 | 75.38963 ± 8.44481 |
| Combination | 0.94065 ± 0.01339 | 0.86835 ± 0.01443 | 0.85535 ± 0.01722 | 0.78944 ± 0.02817 | 0.77949 ± 0.01839 | 0.80000 ± 0.04015 | 0.91799 ± 0.00117 | 0.40725 ± 0.02009 | 0.67962 ± 0.04063 | 11,315,031 ± 0.00000 | 3,535,396,992 ± 310,552,970.21189 | 43.58147 ± 1.86796 |
| SuperTML | 0.92520 ± 0.02326 | 0.84304 ± 0.01217 | 0.80000 ± 0.00820 | 0.68679 ± 0.03608 | 0.73332 ± 0.02467 | 0.65185 ± 0.08008 | 0.88487 ± 0.00168 | 0.43864 ± 0.02864 | 0.54580 ± 0.02822 | 22,928,993 ± 0.00000 | 7,786,935,184 ± 439,722,342.38468 | 66.24800 ± 6.86827 |
| FeatureWrap | 0.88780 ± 0.01107 | 0.83544 ± 0.01951 | 0.80503 ± 0.01177 | 0.68103 ± 0.02795 | 0.76538 ± 0.01704 | 0.61482 ± 0.04611 | 0.90952 ± 0.00729 | 0.37953 ± 0.02420 | 0.55057 ± 0.03017 | 2,917,409 ± 0.00000 | 360,110,752 ± 71,173,136.63975 | 35.18798 ± 0.53815 |
| BIE | 0.90190 ± 0.02154 | 0.84177 ± 0.01790 | 0.80252 ± 0.01142 | 0.70981 ± 0.02820 | 0.70830 ± 0.02201 | 0.71481 ± 0.06495 | 0.88381 ± 0.01224 | 0.44923 ± 0.00981 | 0.56200 ± 0.03313 | 5,614,369 ± 0.00000 | 1,759,626,448 ± 347,776,712.92199 | 28.88145 ± 0.39315 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.92276 ± 0.00796 | 0.86582 ± 0.00693 | 0.84780 ± 0.01745 | 0.76587 ± 0.03540 | 0.79931 ± 0.01773 | 0.73704 ± 0.06058 | 0.89157 ± 0.00584 | 0.38719 ± 0.00776 | 0.65561 ± 0.04349 | 766,225 ± 0.00000 | 30,574,976 ± 0.00000 | 25.09220 ± 1.22643 |
| IGTD | 0.88428 ± 0.03785 | 0.84430 ± 0.02393 | 0.82642 ± 0.03462 | 0.72275 ± 0.05636 | 0.78918 ± 0.05899 | 0.66667 ± 0.05399 | 0.89788 ± 0.02400 | 0.38704 ± 0.04211 | 0.60224 ± 0.08126 | 4,761,809 ± 0.00000 | 163,460,752 ± 0.00000 | 16.20256 ± 0.06821 |
| REFINED | 0.96287 ± 0.01078 | 0.84937 ± 0.01511 | 0.85031 ± 0.01434 | 0.77998 ± 0.02926 | 0.77678 ± 0.01077 | 0.78519 ± 0.05943 | 0.90589 ± 0.01199 | 0.39054 ± 0.03812 | 0.66766 ± 0.03799 | 9,909,553 ± 0.00000 | 340,932,336 ± 0.00000 | 25.17825 ± 0.46305 |
| DistanceMatrix | 0.93984 ± 0.02906 | 0.85190 ± 0.01930 | 0.84025 ± 0.01515 | 0.74686 ± 0.02954 | 0.80735 ± 0.02148 | 0.69630 ± 0.05003 | 0.91094 ± 0.00938 | 0.38867 ± 0.03748 | 0.63560 ± 0.03667 | 398,881 ± 0.00000 | 237,796,608 ± 0.00000 | 21.67408 ± 0.90089 |
| BarGraph | 0.93225 ± 0.01063 | 0.83671 ± 0.02343 | 0.84277 ± 0.02038 | 0.76706 ± 0.03815 | 0.76951 ± 0.02019 | 0.76667 ± 0.06495 | 0.90660 ± 0.00682 | 0.37349 ± 0.01086 | 0.64946 ± 0.05013 | 1,643,897 ± 0.00000 | 285,080,640 ± 0.00000 | 24.90927 ± 0.31574 |
| Combination | 0.98618 ± 0.00411 | 0.85316 ± 0.01638 | 0.84528 ± 0.01812 | 0.76814 ± 0.03445 | 0.78188 ± 0.03446 | 0.75926 ± 0.07052 | 0.90797 ± 0.00365 | 0.38541 ± 0.01811 | 0.65452 ± 0.04255 | 6,506,545 ± 0.00000 | 1,185,363,264 ± 0.00000 | 27.36433 ± 0.40257 |
| SuperTML | 0.90488 ± 0.01610 | 0.81139 ± 0.02508 | 0.77736 ± 0.02834 | 0.64904 ± 0.04761 | 0.69948 ± 0.05551 | 0.60741 ± 0.05768 | 0.85118 ± 0.02660 | 0.47525 ± 0.04847 | 0.49086 ± 0.06707 | 308,001 ± 0.00000 | 591,600,032 ± 0.00000 | 59.56045 ± 0.11764 |
| FeatureWrap | 0.85230 ± 0.01860 | 0.82278 ± 0.02571 | 0.81258 ± 0.03188 | 0.65190 ± 0.09313 | 0.86566 ± 0.02119 | 0.53333 ± 0.12519 | 0.90734 ± 0.00921 | 0.41628 ± 0.04282 | 0.56945 ± 0.07532 | 771,937 ± 0.00000 | 8,683,008 ± 0.00000 | 18.54361 ± 3.35914 |
| BIE | 0.92358 ± 0.04874 | 0.81646 ± 0.03319 | 0.77987 ± 0.01541 | 0.63687 ± 0.04206 | 0.72792 ± 0.05422 | 0.57407 ± 0.08282 | 0.84988 ± 0.02171 | 0.50347 ± 0.05394 | 0.49330 ± 0.03950 | 1,709,825 ± 0.00000 | 144,586,368 ± 0.00000 | 19.45627 ± 0.26663 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.94932 ± 0.01008 | 0.84430 ± 0.01878 | 0.85157 ± 0.01378 | 0.77328 ± 0.03488 | 0.80071 ± 0.01762 | 0.75185 ± 0.07361 | 0.88854 ± 0.00929 | 0.39206 ± 0.02848 | 0.66599 ± 0.03607 | 1,105,425 ± 0.00000 | 31,252,480 ± 0.00000 | 28.72899 ± 0.44864 |
| IGTD | 0.90407 ± 0.02783 | 0.85823 ± 0.02080 | 0.84906 ± 0.01541 | 0.77060 ± 0.03187 | 0.79640 ± 0.03748 | 0.75185 ± 0.07702 | 0.91083 ± 0.01195 | 0.37127 ± 0.01984 | 0.66188 ± 0.03869 | 5,363,153 ± 0.00000 | 164,662,160 ± 0.00000 | 17.62227 ± 0.66907 |
| REFINED | 0.98726 ± 0.00555 | 0.83924 ± 0.02351 | 0.85912 ± 0.01052 | 0.79213 ± 0.02105 | 0.79284 ± 0.01040 | 0.79259 ± 0.04421 | 0.90952 ± 0.00963 | 0.38927 ± 0.03677 | 0.68623 ± 0.02760 | 9,784,689 ± 0.00000 | 340,682,640 ± 0.00000 | 27.31155 ± 1.94910 |
| DistanceMatrix | 0.96423 ± 0.01633 | 0.85696 ± 0.00722 | 0.85157 ± 0.01812 | 0.78160 ± 0.03846 | 0.77956 ± 0.03137 | 0.78889 ± 0.08029 | 0.91778 ± 0.01068 | 0.37667 ± 0.03603 | 0.67195 ± 0.04565 | 487,713 ± 0.00000 | 237,973,696 ± 0.00000 | 25.62306 ± 0.40329 |
| BarGraph | 0.98591 ± 0.01207 | 0.83798 ± 0.00849 | 0.83648 ± 0.01334 | 0.76349 ± 0.02040 | 0.75063 ± 0.02432 | 0.77778 ± 0.03465 | 0.90106 ± 0.02035 | 0.38500 ± 0.03244 | 0.63936 ± 0.03037 | 1,711,929 ± 0.00000 | 285,216,384 ± 0.00000 | 29.47028 ± 0.50732 |
| Combination | 0.97344 ± 0.00805 | 0.86456 ± 0.02031 | 0.84403 ± 0.00689 | 0.76691 ± 0.02117 | 0.77830 ± 0.02188 | 0.75926 ± 0.06142 | 0.91298 ± 0.00702 | 0.36421 ± 0.01151 | 0.65172 ± 0.02346 | 6,443,313 ± 0.00000 | 1,185,236,736 ± 0.00000 | 31.55761 ± 0.85695 |
| SuperTML | 0.90190 ± 0.01529 | 0.82532 ± 0.01150 | 0.80503 ± 0.02395 | 0.67652 ± 0.05840 | 0.76916 ± 0.01546 | 0.60741 ± 0.08425 | 0.89048 ± 0.00405 | 0.42739 ± 0.02224 | 0.54946 ± 0.06066 | 401,441 ± 0.00000 | 591,786,384 ± 0.00000 | 68.14005 ± 1.34413 |
| FeatureWrap | 0.87886 ± 0.01160 | 0.82278 ± 0.03258 | 0.79874 ± 0.01258 | 0.64689 ± 0.02710 | 0.80384 ± 0.05650 | 0.54444 ± 0.04648 | 0.90152 ± 0.01347 | 0.40162 ± 0.01168 | 0.53404 ± 0.03323 | 805,537 ± 0.00000 | 8,749,968 ± 0.00000 | 19.23265 ± 1.01026 |
| BIE | 0.97073 ± 0.01768 | 0.83038 ± 0.02165 | 0.80880 ± 0.01699 | 0.70342 ± 0.02040 | 0.74527 ± 0.03833 | 0.66667 ± 0.01310 | 0.87478 ± 0.00864 | 0.42210 ± 0.01331 | 0.56522 ± 0.03576 | 1,792,161 ± 0.00000 | 144,750,720 ± 0.00000 | 23.14677 ± 0.18553 |
Sick
Leaderboard
| Family | Best variant | Test Accuracy (↑) | Test ROC AUC (↑) | Test F1 (↑) | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|
| Trees | XGBoost | 0.99470 ± 0.00000 | 0.99956 ± 0.00006 | 0.95385 ± 0.00000 | 1.35484 ± 0.10108 | — | — |
| MLP | MLP | 0.95230 ± 0.00467 | 0.94621 ± 0.00286 | 0.46935 ± 0.09472 | 16.09173 ± 0.38074 | 28,161 ± 0.00000 | 55,808 ± 0.00000 |
| ViT | REFINED | 0.99046 ± 0.00443 | 0.99864 ± 0.00083 | 0.92076 ± 0.03709 | 175.05356 ± 1.89928 | 8,528,647 ± 0.00000 | 1,144,087,780 ± 0.00000 |
| ViT+MLP | REFINED | 0.99046 ± 0.00237 | 0.99753 ± 0.00105 | 0.92089 ± 0.01929 | 188.65539 ± 4.48373 | 9,115,335 ± 0.00000 | 9,736,695,328 ± 1,924,383,382.47501 |
| CNN | SuperTML | 0.98905 ± 0.00230 | 0.99735 ± 0.00054 | 0.90451 ± 0.02041 | 128.05202 ± 1.17262 | 161,177 ± 0.00000 | 259,514,168 ± 0.00000 |
| CNN+MLP | SuperTML | 0.98516 ± 0.00201 | 0.98777 ± 0.00760 | 0.87574 ± 0.01504 | 133.64104 ± 1.96535 | 185,833 ± 0.00000 | 259,563,040 ± 0.00000 |
Architecture Results
Tree Baselines
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | Train time (s) | #Params | FLOPs |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CatBoost | 1.00000 ± 0.00000 | 0.98834 ± 0.00158 | 0.99329 ± 0.00148 | 0.94181 ± 0.01323 | 0.98124 ± 0.01714 | 0.90588 ± 0.02461 | 0.99974 ± 0.00016 | 0.01154 ± 0.00133 | 0.93923 ± 0.01374 | 12.15761 ± 0.10894 | — | — |
| LightGBM | 1.00000 ± 0.00000 | 0.98975 ± 0.00262 | 0.99011 ± 0.00158 | 0.91550 ± 0.01476 | 0.93823 ± 0.00174 | 0.89412 ± 0.02631 | 0.99853 ± 0.00025 | 0.02572 ± 0.00208 | 0.91063 ± 0.01518 | 117.51338 ± 5.29518 | — | — |
| XGBoost | 1.00000 ± 0.00000 | 0.98975 ± 0.00148 | 0.99470 ± 0.00000 | 0.95385 ± 0.00000 | 1.00000 ± 0.00000 | 0.91177 ± 0.00000 | 0.99956 ± 0.00006 | 0.01558 ± 0.00055 | 0.95218 ± 0.00000 | 1.35484 ± 0.10108 | — | — |
MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MLP | 0.97114 ± 0.00560 | 0.96643 ± 0.00250 | 0.95230 ± 0.00467 | 0.46935 ± 0.09472 | 0.69505 ± 0.04481 | 0.35882 ± 0.09160 | 0.94621 ± 0.00286 | 0.12325 ± 0.00276 | 0.47606 ± 0.08221 | 28,161 ± 0.00000 | 55,808 ± 0.00000 | 16.09173 ± 0.38074 |
ViT
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.96561 ± 0.00522 | 0.95901 ± 0.00290 | 0.94982 ± 0.00691 | 0.58199 ± 0.05247 | 0.58762 ± 0.06874 | 0.58235 ± 0.07323 | 0.96186 ± 0.00525 | 0.11067 ± 0.00933 | 0.55705 ± 0.05582 | 12,541,273 ± 0.00000 | 125,166,258 ± 0.00000 | 164.74915 ± 0.47587 |
| IGTD | 0.97856 ± 0.00504 | 0.97350 ± 0.00331 | 0.96148 ± 0.00383 | 0.69224 ± 0.05014 | 0.66437 ± 0.02961 | 0.72941 ± 0.09843 | 0.96866 ± 0.00795 | 0.10498 ± 0.01729 | 0.67441 ± 0.05194 | 2,706,017 ± 0.00000 | 26,246,106 ± 0.00000 | 94.31224 ± 0.81427 |
| REFINED | 0.99401 ± 0.00166 | 0.98834 ± 0.00321 | 0.99046 ± 0.00443 | 0.92076 ± 0.03709 | 0.91884 ± 0.04085 | 0.92353 ± 0.04460 | 0.99864 ± 0.00083 | 0.02541 ± 0.01088 | 0.91592 ± 0.03927 | 8,528,647 ± 0.00000 | 1,144,087,780 ± 0.00000 | 175.05356 ± 1.89928 |
| DistanceMatrix | 0.98796 ± 0.00488 | 0.98269 ± 0.00194 | 0.97774 ± 0.00493 | 0.79409 ± 0.06064 | 0.88157 ± 0.02536 | 0.72941 ± 0.10482 | 0.99180 ± 0.00316 | 0.05697 ± 0.00967 | 0.78870 ± 0.05550 | 10,990,567 ± 0.00000 | 803,164,072 ± 0.00000 | 199.69149 ± 4.58353 |
| BarGraph | 0.99076 ± 0.00292 | 0.98657 ± 0.00268 | 0.97279 ± 0.00158 | 0.75566 ± 0.01051 | 0.82180 ± 0.02991 | 0.70000 ± 0.01315 | 0.99180 ± 0.00089 | 0.06448 ± 0.00903 | 0.74423 ± 0.01240 | 9,863,047 ± 0.00000 | 730,349,156 ± 0.00000 | 190.97678 ± 3.42995 |
| Combination | 0.98901 ± 0.00587 | 0.98481 ± 0.00407 | 0.97208 ± 0.00383 | 0.75772 ± 0.01138 | 0.80640 ± 0.08622 | 0.72353 ± 0.05343 | 0.99151 ± 0.00076 | 0.07574 ± 0.01719 | 0.74700 ± 0.01622 | 21,612,007 ± 0.00000 | 1,606,355,748 ± 0.00000 | 231.62542 ± 5.14258 |
| SuperTML | 0.98674 ± 0.00431 | 0.98127 ± 0.00201 | 0.98905 ± 0.00521 | 0.91076 ± 0.03696 | 0.91608 ± 0.09248 | 0.91177 ± 0.03602 | 0.99792 ± 0.00087 | 0.02856 ± 0.00687 | 0.90673 ± 0.03945 | 2,752,961 ± 0.00000 | 362,439,712 ± 0.00000 | 121.46045 ± 0.67693 |
| FeatureWrap | 0.97917 ± 0.00206 | 0.96396 ± 0.00296 | 0.94770 ± 0.00387 | 0.38599 ± 0.10711 | 0.64200 ± 0.05985 | 0.28235 ± 0.09207 | 0.83982 ± 0.08735 | 0.17812 ± 0.01632 | 0.39960 ± 0.09043 | 14,503,321 ± 0.00000 | 744,533,868 ± 0.00000 | 173.84322 ± 6.30341 |
| BIE | 0.98644 ± 0.00270 | 0.96996 ± 0.00331 | 0.98587 ± 0.00331 | 0.88289 ± 0.02445 | 0.88452 ± 0.04933 | 0.88235 ± 0.00000 | 0.99329 ± 0.00156 | 0.04914 ± 0.00662 | 0.87568 ± 0.02634 | 6,779,137 ± 0.00000 | 223,694,368 ± 0.00000 | 152.71757 ± 2.49747 |
ViT + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.96796 ± 0.00333 | 0.96113 ± 0.00375 | 0.95795 ± 0.00521 | 0.60376 ± 0.04246 | 0.71474 ± 0.12739 | 0.53529 ± 0.07613 | 0.96194 ± 0.00776 | 0.10440 ± 0.00497 | 0.59327 ± 0.05036 | 12,599,865 ± 0.00000 | 1,798,167,824 ± 355,394,121.1918 | 195.16018 ± 10.17233 |
| IGTD | 0.98621 ± 0.00183 | 0.97632 ± 0.00158 | 0.96360 ± 0.00201 | 0.72676 ± 0.01440 | 0.66223 ± 0.01696 | 0.80588 ± 0.02631 | 0.96450 ± 0.00155 | 0.09834 ± 0.00827 | 0.71154 ± 0.01558 | 2,728,001 ± 0.00000 | 845,176,500 ± 74,241,187.91248 | 127.48017 ± 9.17736 |
| REFINED | 0.99492 ± 0.00297 | 0.98587 ± 0.00279 | 0.99046 ± 0.00237 | 0.92089 ± 0.01929 | 0.91832 ± 0.02342 | 0.92353 ± 0.01611 | 0.99753 ± 0.00105 | 0.02915 ± 0.00709 | 0.91583 ± 0.02052 | 9,115,335 ± 0.00000 | 9,736,695,328 ± 1,924,383,382.47501 | 188.65539 ± 4.48373 |
| DistanceMatrix | 0.98758 ± 0.00436 | 0.98339 ± 0.00268 | 0.97738 ± 0.00689 | 0.80839 ± 0.06465 | 0.82122 ± 0.06459 | 0.80000 ± 0.08921 | 0.99066 ± 0.00470 | 0.06305 ± 0.01414 | 0.79764 ± 0.06756 | 10,805,607 ± 0.00000 | 7,124,879,680 ± 1,408,177,990.21573 | 242.81214 ± 3.95959 |
| BarGraph | 0.98924 ± 0.00328 | 0.98657 ± 0.00201 | 0.97244 ± 0.00426 | 0.75713 ± 0.02390 | 0.81588 ± 0.08056 | 0.71176 ± 0.03835 | 0.99140 ± 0.00121 | 0.06079 ± 0.00375 | 0.74629 ± 0.02866 | 10,135,719 ± 0.00000 | 6,480,980,256 ± 1,280,916,192.47132 | 213.14444 ± 3.54831 |
| Combination | 0.98591 ± 0.00448 | 0.98092 ± 0.00230 | 0.97456 ± 0.00201 | 0.75848 ± 0.01708 | 0.88386 ± 0.03475 | 0.66471 ± 0.01611 | 0.99041 ± 0.00175 | 0.06439 ± 0.01303 | 0.75393 ± 0.01941 | 21,649,127 ± 0.00000 | 14,255,003,936 ± 2,817,392,530.77657 | 286.07178 ± 13.08104 |
| SuperTML | 0.99038 ± 0.00399 | 0.98021 ± 0.00403 | 0.98905 ± 0.00194 | 0.90557 ± 0.01815 | 0.93825 ± 0.02786 | 0.87647 ± 0.03835 | 0.99557 ± 0.00344 | 0.03629 ± 0.01205 | 0.90077 ± 0.01866 | 3,214,721 ± 0.00000 | 6,868,302,048 ± 603,318,836.93553 | 160.23175 ± 12.51680 |
| FeatureWrap | 0.97803 ± 0.00149 | 0.96290 ± 0.00216 | 0.94912 ± 0.00230 | 0.44157 ± 0.02069 | 0.65242 ± 0.05546 | 0.33529 ± 0.02631 | 0.88295 ± 0.02571 | 0.16716 ± 0.01349 | 0.44404 ± 0.02254 | 14,466,329 ± 0.00000 | 6,876,137,312 ± 1,359,015,963.12424 | 186.36146 ± 3.23081 |
| BIE | 0.98167 ± 0.00175 | 0.96855 ± 0.00230 | 0.97738 ± 0.00383 | 0.80320 ± 0.03661 | 0.83931 ± 0.02592 | 0.77059 ± 0.04833 | 0.98004 ± 0.00999 | 0.07353 ± 0.01193 | 0.79220 ± 0.03801 | 6,593,921 ± 0.00000 | 2,199,400,704 ± 434,694,732.00111 | 178.52272 ± 5.77908 |
CNN
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.97492 ± 0.00457 | 0.96360 ± 0.00097 | 0.95866 ± 0.00201 | 0.61074 ± 0.01889 | 0.70697 ± 0.04719 | 0.54118 ± 0.04460 | 0.96834 ± 0.00508 | 0.09965 ± 0.00561 | 0.59646 ± 0.01711 | 5,811,921 ± 0.00000 | 504,544,512 ± 0.00000 | 60.22975 ± 2.73501 |
| IGTD | 0.99091 ± 0.00348 | 0.97527 ± 0.00250 | 0.50989 ± 0.16878 | 0.19767 ± 0.04733 | 0.11196 ± 0.03183 | 0.93529 ± 0.09843 | 0.78446 ± 0.06959 | 1.17614 ± 0.32310 | 0.21019 ± 0.05187 | 430,409 ± 0.00000 | 7,845,504 ± 0.00000 | 53.34989 ± 3.99032 |
| REFINED | 0.98970 ± 0.00340 | 0.98269 ± 0.00340 | 0.97703 ± 0.00331 | 0.79811 ± 0.03202 | 0.84442 ± 0.03184 | 0.75882 ± 0.05658 | 0.98767 ± 0.00635 | 0.06148 ± 0.00356 | 0.78792 ± 0.03278 | 658,737 ± 0.00000 | 13,018,464 ± 0.00000 | 96.42864 ± 1.62120 |
| DistanceMatrix | 0.98901 ± 0.00303 | 0.98622 ± 0.00290 | 0.98551 ± 0.00422 | 0.87605 ± 0.03556 | 0.90410 ± 0.05371 | 0.85294 ± 0.05502 | 0.99623 ± 0.00100 | 0.04045 ± 0.00813 | 0.86975 ± 0.03660 | 284,897 ± 0.00000 | 266,999,040 ± 0.00000 | 87.48377 ± 1.62526 |
| BarGraph | 0.99242 ± 0.00346 | 0.97950 ± 0.00620 | 0.96678 ± 0.00194 | 0.72186 ± 0.01493 | 0.72710 ± 0.02439 | 0.71765 ± 0.02631 | 0.98576 ± 0.00057 | 0.08901 ± 0.01131 | 0.70449 ± 0.01561 | 2,767,521 ± 0.00000 | 905,616,000 ± 0.00000 | 73.37844 ± 0.77813 |
| Combination | 0.98682 ± 0.00745 | 0.97950 ± 0.00567 | 0.96855 ± 0.00422 | 0.72054 ± 0.03323 | 0.78245 ± 0.07852 | 0.67647 ± 0.07499 | 0.98586 ± 0.00553 | 0.08355 ± 0.00711 | 0.70892 ± 0.03554 | 1,903,353 ± 0.00000 | 517,387,616 ± 0.00000 | 68.39209 ± 1.78483 |
| SuperTML | 0.98955 ± 0.00346 | 0.98057 ± 0.00306 | 0.98905 ± 0.00230 | 0.90451 ± 0.02041 | 0.94837 ± 0.01767 | 0.86471 ± 0.02631 | 0.99735 ± 0.00054 | 0.03016 ± 0.00604 | 0.89985 ± 0.02141 | 161,177 ± 0.00000 | 259,514,168 ± 0.00000 | 128.05202 ± 1.17262 |
| FeatureWrap | 0.98129 ± 0.00375 | 0.96502 ± 0.00290 | 0.93322 ± 0.02122 | 0.49342 ± 0.05134 | 0.54033 ± 0.20622 | 0.54118 ± 0.15920 | 0.91895 ± 0.02492 | 0.16641 ± 0.04080 | 0.48445 ± 0.04361 | 307,489 ± 0.00000 | 10,907,392 ± 0.00000 | 44.15835 ± 2.44508 |
| BIE | 0.98803 ± 0.00675 | 0.97173 ± 0.00375 | 0.97703 ± 0.00780 | 0.79846 ± 0.08677 | 0.82651 ± 0.04313 | 0.78235 ± 0.14197 | 0.99110 ± 0.00299 | 0.06156 ± 0.01311 | 0.78966 ± 0.08635 | 440,337 ± 0.00000 | 572,670,432 ± 0.00000 | 94.26429 ± 0.14415 |
CNN + MLP
| Method | Train Accuracy | Val Accuracy | Test Accuracy (↑) | Test F1 (↑) | Test Precision | Test Recall | Test ROC AUC | Test LogLoss | Test MCC | #Params | FLOPs | Train time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TINTO | 0.97667 ± 0.00598 | 0.96466 ± 0.00530 | 0.95760 ± 0.00515 | 0.57806 ± 0.04051 | 0.72617 ± 0.08716 | 0.48235 ± 0.03354 | 0.97090 ± 0.00732 | 0.09546 ± 0.00854 | 0.57047 ± 0.04841 | 4,789,969 ± 0.00000 | 502,501,632 ± 0.00000 | 55.14807 ± 0.76567 |
| IGTD | 0.98477 ± 0.00272 | 0.97668 ± 0.00403 | 0.65018 ± 0.24117 | 0.23966 ± 0.08294 | 0.16098 ± 0.07059 | 0.78235 ± 0.31582 | 0.83047 ± 0.07461 | 0.64664 ± 0.45625 | 0.24157 ± 0.09687 | 437,209 ± 0.00000 | 7,858,848 ± 0.00000 | 49.62886 ± 0.20061 |
| REFINED | 0.98614 ± 0.00577 | 0.98269 ± 0.00262 | 0.97456 ± 0.00509 | 0.79243 ± 0.03449 | 0.78682 ± 0.07332 | 0.80588 ± 0.06444 | 0.98720 ± 0.00641 | 0.06921 ± 0.01543 | 0.78114 ± 0.03563 | 805,297 ± 0.00000 | 13,311,104 ± 0.00000 | 82.11304 ± 2.82156 |
| DistanceMatrix | 0.98652 ± 0.00314 | 0.97950 ± 0.00509 | 0.97774 ± 0.00644 | 0.80769 ± 0.04420 | 0.85337 ± 0.08728 | 0.77059 ± 0.03222 | 0.98925 ± 0.00286 | 0.06321 ± 0.00623 | 0.79830 ± 0.04825 | 343,201 ± 0.00000 | 267,115,168 ± 0.00000 | 94.17146 ± 1.66290 |
| BarGraph | 0.99220 ± 0.00274 | 0.98057 ± 0.00279 | 0.96961 ± 0.00591 | 0.74205 ± 0.03391 | 0.76914 ± 0.07782 | 0.72353 ± 0.04922 | 0.98821 ± 0.00298 | 0.08000 ± 0.02357 | 0.72835 ± 0.03530 | 2,795,681 ± 0.00000 | 905,671,808 ± 0.00000 | 76.31179 ± 0.78716 |
| Combination | 0.99204 ± 0.00303 | 0.97986 ± 0.00594 | 0.96608 ± 0.00550 | 0.69829 ± 0.04700 | 0.75119 ± 0.05739 | 0.65294 ± 0.04362 | 0.98512 ± 0.00242 | 0.09018 ± 0.01523 | 0.68248 ± 0.05021 | 1,984,057 ± 0.00000 | 517,548,448 ± 0.00000 | 73.68748 ± 0.70628 |
| SuperTML | 0.98970 ± 0.00590 | 0.98304 ± 0.00237 | 0.98516 ± 0.00201 | 0.87574 ± 0.01504 | 0.88548 ± 0.05392 | 0.87059 ± 0.04922 | 0.98777 ± 0.00760 | 0.05496 ± 0.01888 | 0.86914 ± 0.01571 | 185,833 ± 0.00000 | 259,563,040 ± 0.00000 | 133.64104 ± 1.96535 |
| FeatureWrap | 0.98280 ± 0.00201 | 0.96572 ± 0.00366 | 0.93958 ± 0.01746 | 0.48403 ± 0.02997 | 0.54888 ± 0.13640 | 0.46471 ± 0.08675 | 0.90951 ± 0.01294 | 0.16759 ± 0.02673 | 0.46505 ± 0.03418 | 380,257 ± 0.00000 | 11,052,288 ± 0.00000 | 49.26098 ± 0.49129 |
| BIE | 0.98061 ± 0.00868 | 0.96608 ± 0.00457 | 0.97774 ± 0.00426 | 0.81839 ± 0.03416 | 0.81121 ± 0.07508 | 0.84118 ± 0.11122 | 0.99103 ± 0.00178 | 0.06217 ± 0.00518 | 0.81103 ± 0.03586 | 450,257 ± 0.00000 | 572,690,016 ± 0.00000 | 99.25059 ± 4.39414 |