Binary Classification Benchmarks

Dataset Overview

Dataset Instances Features Numeric Categorical Target Classes Imbalance
Adult 48842 14 6 8 class 2 3.179173440574998
Bioresponse 3751 1776 1776 0 target 2 1.1846243447874198
Credit-approval 690 15 6 9 class 2 1.247557003257329
Dengue chikunguya bin 11448 26 2 24 CLASSI_FIN 2 1.0
Nomao 34465 118 89 29 Class 2 2.5011174319382365
Preprocessed heloc 10459 23 23 0 RiskPerformance 2 1.1246
Qsar-biodeg 1055 41 41 0 Class 2 1.9634831460674158
Sick 3772 29 7 22 Class 2 15.329004329004329

Quick Check

Dataset Type Family / Variant Test accuracy Test ROC AUC
Adult Best classical Trees / CatBoost 0.87561 ± 0.00119 0.93126 ± 0.00019
Best transformed ViT / SuperTML 0.87359 ± 0.00136 0.92914 ± 0.00167
Bioresponse Best classical Trees / XGBoost 0.81847 ± 0.00477 0.88961 ± 0.00122
Best transformed CNN / REFINED 0.79183 ± 0.01769 0.85621 ± 0.00549
Credit-approval Best classical Trees / CatBoost 0.88462 ± 0.00000 0.94858 ± 0.00155
Best transformed ViT / FeatureWrap 0.89808 ± 0.03010 0.95735 ± 0.00327
Dengue chikunguya bin Best classical Trees / CatBoost 0.77381 ± 0.00152 0.84859 ± 0.00078
Best transformed CNN+MLP / SuperTML 0.76577 ± 0.00374 0.83457 ± 0.00086
Nomao Best classical Trees / XGBoost 0.97033 ± 0.00082 0.99467 ± 0.00018
Best transformed CNN+MLP / BIE 0.96549 ± 0.00095 0.99383 ± 0.00052
Preprocessed heloc Best classical Trees / XGBoost 0.73153 ± 0.00194 0.79220 ± 0.00038
Best transformed ViT / BarGraph 0.72856 ± 0.00239 0.78951 ± 0.00144
Qsar-biodeg Best classical Trees / CatBoost 0.84528 ± 0.00954 0.90328 ± 0.00679
Best transformed CNN+MLP / REFINED 0.85912 ± 0.01052 0.90952 ± 0.00963
Sick Best classical Trees / XGBoost 0.99470 ± 0.00000 0.99956 ± 0.00006
Best transformed ViT / REFINED 0.99046 ± 0.00443 0.99864 ± 0.00083

Adult

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees CatBoost 0.87561 ± 0.00119 0.93126 ± 0.00019 0.71620 ± 0.00276 28.98606 ± 0.24880
MLP MLP 0.85953 ± 0.00222 0.91176 ± 0.00086 0.68127 ± 0.00440 54.85229 ± 0.74675 3,521 ± 0.00000 7,008 ± 0.00000
ViT SuperTML 0.87359 ± 0.00136 0.92914 ± 0.00167 0.71088 ± 0.00414 6,181.48851 ± 339.90587 5,228,897 ± 0.00000 352,012,928,888.79999 ± 722,733,301,972.46082
ViT+MLP SuperTML 0.87274 ± 0.00118 0.93130 ± 0.00115 0.71040 ± 0.00632 6,177.39169 ± 378.95922 5,233,441 ± 0.00000 37,056,822,293.6 ± 7,158,262,348.27
CNN SuperTML 0.87092 ± 0.00105 0.92873 ± 0.00096 0.70455 ± 0.01283 6,506.72809 ± 361.64444 1,432,329 ± 0.00000 59,225,658,572.8 ± 23,105,015,668.63228
CNN+MLP SuperTML 0.87225 ± 0.00133 0.93014 ± 0.00039 0.70655 ± 0.00922 6,664.94851 ± 385.20819 1,400,665 ± 0.00000 3,967,548,385,024 ± 8,735,996,902,048.83398
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC Train time (s) #Params FLOPs
CatBoost 0.88360 ± 0.00029 0.87303 ± 0.00086 0.87561 ± 0.00119 0.71620 ± 0.00276 0.78855 ± 0.00359 0.65602 ± 0.00337 0.93126 ± 0.00019 0.27150 ± 0.00043 0.64183 ± 0.00348 28.98606 ± 0.24880
LightGBM 0.88233 ± 0.00000 0.87033 ± 0.00000 0.87485 ± 0.00000 0.71548 ± 0.00000 0.78435 ± 0.00000 0.65773 ± 0.00000 0.93068 ± 0.00000 0.27285 ± 0.00000 0.64010 ± 0.00000 0.74575 ± 0.02078
XGBoost 0.89759 ± 0.00057 0.87377 ± 0.00088 0.87474 ± 0.00086 0.71367 ± 0.00186 0.78753 ± 0.00316 0.65248 ± 0.00247 0.93168 ± 0.00010 0.26967 ± 0.00020 0.63901 ± 0.00244 4.73544 ± 0.21290
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.86521 ± 0.00235 0.85607 ± 0.00092 0.85953 ± 0.00222 0.68127 ± 0.00440 0.74533 ± 0.00996 0.62750 ± 0.00866 0.91176 ± 0.00086 0.31164 ± 0.00128 0.59571 ± 0.00570 3,521 ± 0.00000 7,008 ± 0.00000 54.85229 ± 0.74675
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.83128 ± 0.00089 0.83729 ± 0.00108 0.83385 ± 0.00100 0.59862 ± 0.00506 0.70936 ± 0.00836 0.51797 ± 0.01116 0.88431 ± 0.00037 0.35248 ± 0.00050 0.50691 ± 0.00317 7,444,313 ± 0.00000 107,623,264,136 ± 230,007,694,241.9996 955.04623 ± 298.05726
IGTD 0.86015 ± 0.00557 0.85678 ± 0.00265 0.86158 ± 0.00332 0.68040 ± 0.00919 0.76002 ± 0.00810 0.61597 ± 0.01266 0.91413 ± 0.00414 0.30298 ± 0.00639 0.59867 ± 0.01054 5,392,857 ± 0.00000 287,033,393,073.59998 ± 628,903,515,621.57666 940.20070 ± 313.79190
REFINED 0.86328 ± 0.00182 0.85771 ± 0.00083 0.86191 ± 0.00254 0.68188 ± 0.00769 0.75960 ± 0.00736 0.61871 ± 0.01240 0.91688 ± 0.00101 0.29817 ± 0.00201 0.60003 ± 0.00826 21,741,465 ± 0.00000 4,628,581,563,982.59961 ± 9,329,933,670,002.79297 1,652.54363 ± 41.19085
DistanceMatrix 0.86464 ± 0.00151 0.85807 ± 0.00062 0.86185 ± 0.00161 0.68275 ± 0.00507 0.75787 ± 0.01098 0.62145 ± 0.01368 0.91661 ± 0.00097 0.29868 ± 0.00162 0.60047 ± 0.00451 3,296,737 ± 0.00000 1,834,562,810.4 ± 446,684,280.80716 4,508.00144 ± 375.06081
BarGraph 0.86968 ± 0.00270 0.86317 ± 0.00054 0.86450 ± 0.00094 0.68466 ± 0.00868 0.77271 ± 0.01430 0.61529 ± 0.02282 0.91980 ± 0.00131 0.29290 ± 0.00290 0.60640 ± 0.00525 24,031,129 ± 0.00000 6,258,016,842,372.7998 ± 13,901,105,812,226.26172 5,940.15903 ± 237.16990
Combination 0.86008 ± 0.00138 0.86022 ± 0.00110 0.86213 ± 0.00221 0.68678 ± 0.00726 0.75232 ± 0.00822 0.63194 ± 0.01422 0.91691 ± 0.00134 0.29941 ± 0.00295 0.60308 ± 0.00739 5,994,017 ± 0.00000 218,986,449,776 ± 480,295,508,944.83264 4,857.28221 ± 371.24368
SuperTML 0.87465 ± 0.00145 0.86934 ± 0.00112 0.87359 ± 0.00136 0.71088 ± 0.00414 0.78505 ± 0.00701 0.64963 ± 0.00917 0.92914 ± 0.00167 0.27369 ± 0.00296 0.63560 ± 0.00424 5,228,897 ± 0.00000 352,012,928,888.79999 ± 722,733,301,972.46082 6,181.48851 ± 339.90587
FeatureWrap 0.84682 ± 0.00293 0.84362 ± 0.00086 0.84272 ± 0.00232 0.62722 ± 0.00655 0.72443 ± 0.00803 0.55311 ± 0.00979 0.89529 ± 0.00143 0.33598 ± 0.00187 0.53761 ± 0.00717 2,422,585 ± 0.00000 867,308,785,689.59998 ± 1,919,113,357,454.8186 932.27980 ± 307.03148
BIE 0.87630 ± 0.00094 0.86852 ± 0.00071 0.87247 ± 0.00126 0.70830 ± 0.00466 0.78225 ± 0.00589 0.64723 ± 0.01011 0.92942 ± 0.00099 0.27481 ± 0.00214 0.63229 ± 0.00440 1,593,601 ± 0.00000 12,345,122,048 ± 27,115,085,185.77042 4,610.25863 ± 336.54583
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.86337 ± 0.00180 0.85403 ± 0.00114 0.85986 ± 0.00125 0.67875 ± 0.00722 0.75175 ± 0.01042 0.61905 ± 0.01772 0.91180 ± 0.00059 0.30952 ± 0.00105 0.59493 ± 0.00523 7,222,777 ± 0.00000 586,200,022,170.40002 ± 1,270,841,484,703.28784 1,056.53155 ± 334.00480
IGTD 0.86384 ± 0.00271 0.85703 ± 0.00054 0.86147 ± 0.00127 0.67790 ± 0.01154 0.76465 ± 0.02129 0.61015 ± 0.03098 0.91554 ± 0.00043 0.30127 ± 0.00071 0.59779 ± 0.00634 5,409,593 ± 0.00000 670,065,928,841.59998 ± 1,495,405,248,414.19141 1,093.33736 ± 374.21048
REFINED 0.86341 ± 0.00075 0.85793 ± 0.00031 0.86314 ± 0.00187 0.68828 ± 0.00689 0.75621 ± 0.00614 0.63172 ± 0.01324 0.91792 ± 0.00071 0.29653 ± 0.00097 0.60557 ± 0.00669 21,777,145 ± 0.00000 17,787,701,979,933.19922 ± 39,481,469,747,923.86719 1,873.85844 ± 65.74827
DistanceMatrix 0.86239 ± 0.00218 0.85591 ± 0.00110 0.85986 ± 0.00122 0.66759 ± 0.00849 0.77260 ± 0.02083 0.58871 ± 0.02553 0.91395 ± 0.00092 0.30392 ± 0.00085 0.58993 ± 0.00325 3,311,393 ± 0.00000 2,919,231,294.4 ± 852,405,747.02616 4,826.9087 ± 45.69974
BarGraph 0.86692 ± 0.00427 0.86113 ± 0.00152 0.86458 ± 0.00210 0.68986 ± 0.00924 0.76315 ± 0.01128 0.62989 ± 0.02054 0.91823 ± 0.00109 0.29553 ± 0.00194 0.60903 ± 0.00788 24,050,201 ± 0.00000 4,883,756,924,620.7998 ± 10,798,147,023,876.53906 6,173.47881 ± 267.93039
Combination 0.86802 ± 0.00200 0.86099 ± 0.00129 0.86264 ± 0.00135 0.68374 ± 0.00906 0.76121 ± 0.00819 0.62099 ± 0.02010 0.91747 ± 0.00177 0.29621 ± 0.00304 0.60240 ± 0.00697 5,958,881 ± 0.00000 7,196,016,444.8 ± 1,635,801,603.87701 4,978.12597 ± 387.62317
SuperTML 0.88046 ± 0.00154 0.86997 ± 0.00148 0.87274 ± 0.00118 0.71040 ± 0.00632 0.77981 ± 0.00789 0.65260 ± 0.01550 0.93130 ± 0.00115 0.27024 ± 0.00273 0.63390 ± 0.00516 5,233,441 ± 0.00000 37,056,822,293.6 ± 7,158,262,348.27 6,177.39169 ± 378.95922
FeatureWrap 0.86285 ± 0.00215 0.85665 ± 0.00252 0.85801 ± 0.00179 0.67467 ± 0.00224 0.74679 ± 0.01039 0.61540 ± 0.00787 0.91125 ± 0.00065 0.31072 ± 0.00144 0.58948 ± 0.00368 2,426,745 ± 0.00000 1,228,120,721,164.80005 ± 1,951,164,300,184.09937 1,091.41359 ± 369.05713
BIE 0.87888 ± 0.00244 0.86926 ± 0.00051 0.87103 ± 0.00185 0.70685 ± 0.00897 0.77513 ± 0.01649 0.65043 ± 0.02455 0.92784 ± 0.00171 0.27826 ± 0.00204 0.62930 ± 0.00648 1,609,857 ± 0.00000 2,645,073,401.6 ± 555,765,262.00882 4,946.27398 ± 467.90596
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.83209 ± 0.00174 0.83456 ± 0.00120 0.83352 ± 0.00163 0.60663 ± 0.02047 0.69957 ± 0.02721 0.53862 ± 0.04913 0.88401 ± 0.00072 0.35365 ± 0.00100 0.51172 ± 0.01088 100,193 ± 0.00000 1,684,666,163.2 ± 2,754,555,136.56125 478.57181 ± 160.01648
IGTD 0.86447 ± 0.00324 0.85616 ± 0.00192 0.85959 ± 0.00142 0.67791 ± 0.00607 0.75138 ± 0.00935 0.61780 ± 0.01458 0.91392 ± 0.00058 0.30404 ± 0.00116 0.59396 ± 0.00505 38,833 ± 0.00000 6,470,703,049.6 ± 11,396,710,036.89308 457.55727 ± 168.56427
REFINED 0.86487 ± 0.00277 0.85779 ± 0.00110 0.86229 ± 0.00088 0.68948 ± 0.00649 0.74896 ± 0.01374 0.63936 ± 0.02127 0.91550 ± 0.00092 0.30210 ± 0.00237 0.60510 ± 0.00386 12,174,849 ± 0.00000 1,720,528,502,553.6001 ± 1,569,858,666,121.05493 541.75531 ± 189.70280
DistanceMatrix 0.86197 ± 0.00147 0.85725 ± 0.00125 0.85940 ± 0.00208 0.68444 ± 0.00875 0.73906 ± 0.00692 0.63765 ± 0.01859 0.91542 ± 0.00127 0.30104 ± 0.00174 0.59744 ± 0.00848 2,790,801 ± 0.00000 8,200,082,621,056 ± 18,146,899,842,796.75781 6,518.84197 ± 261.08108
BarGraph 0.86547 ± 0.00157 0.86085 ± 0.00088 0.86090 ± 0.00154 0.67939 ± 0.00532 0.75731 ± 0.00508 0.61609 ± 0.00967 0.91640 ± 0.00079 0.29930 ± 0.00143 0.59694 ± 0.00528 7,644,897 ± 0.00000 9,004,026,309,913.59961 ± 19,597,071,669,553.15234 7,423.92973 ± 251.21881
Combination 0.87075 ± 0.00148 0.86380 ± 0.00049 0.86461 ± 0.00160 0.68443 ± 0.00971 0.77421 ± 0.01875 0.61426 ± 0.02639 0.92025 ± 0.00057 0.29313 ± 0.00074 0.60664 ± 0.00612 1,576,241 ± 0.00000 62,225,010,278.4 ± 16,984,745,198.02466 6,244.33529 ± 242.47695
SuperTML 0.87654 ± 0.00305 0.86921 ± 0.00074 0.87092 ± 0.00105 0.70455 ± 0.01283 0.77915 ± 0.01987 0.64438 ± 0.03320 0.92873 ± 0.00096 0.27546 ± 0.00236 0.62814 ± 0.00758 1,432,329 ± 0.00000 59,225,658,572.8 ± 23,105,015,668.63228 6,506.72809 ± 361.64444
FeatureWrap 0.84752 ± 0.00160 0.84592 ± 0.00131 0.84673 ± 0.00133 0.63646 ± 0.01153 0.73590 ± 0.01070 0.56132 ± 0.02392 0.90074 ± 0.00095 0.32895 ± 0.00138 0.54985 ± 0.00784 899,769 ± 0.00000 370,919,801,030.40002 ± 789,042,880,026.20093 747.08329 ± 284.61185
BIE 0.88156 ± 0.00547 0.86820 ± 0.00244 0.86925 ± 0.00191 0.70275 ± 0.01175 0.77077 ± 0.01686 0.64689 ± 0.03157 0.92401 ± 0.00215 0.28519 ± 0.00246 0.62419 ± 0.00940 415,385 ± 0.00000 389,462,076,129.59998 ± 852,031,168,299.22314 4,916.45485 ± 321.72315
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.86172 ± 0.00238 0.85296 ± 0.00084 0.85983 ± 0.00100 0.67662 ± 0.00294 0.75539 ± 0.01163 0.61301 ± 0.01254 0.91182 ± 0.00050 0.31034 ± 0.00163 0.59374 ± 0.00043 99,009 ± 0.00000 19,466,003,283.2 ± 27,266,599,498.37244 544.87111 ± 184.90659
IGTD 0.86247 ± 0.00033 0.85635 ± 0.00161 0.85888 ± 0.00228 0.67780 ± 0.00797 0.74737 ± 0.01681 0.62076 ± 0.02172 0.91260 ± 0.00053 0.30736 ± 0.00047 0.59291 ± 0.00661 42,425 ± 0.00000 4,091,177,942.4 ± 5,544,591,060.72648 553.18020 ± 212.15965
REFINED 0.86241 ± 0.00441 0.85643 ± 0.00091 0.86090 ± 0.00117 0.67987 ± 0.01179 0.75724 ± 0.02093 0.61837 ± 0.03476 0.91496 ± 0.00080 0.30327 ± 0.00155 0.59784 ± 0.00745 11,238,497 ± 0.00000 1,063,696,149,612.80005 ± 1,564,896,883,320.57617 656.11336 ± 243.87783
DistanceMatrix 0.86204 ± 0.00249 0.85673 ± 0.00169 0.86030 ± 0.00095 0.67165 ± 0.00641 0.76767 ± 0.01450 0.59749 ± 0.01848 0.91556 ± 0.00099 0.30197 ± 0.00159 0.59231 ± 0.00322 2,909,233 ± 0.00000 2,247,538,406,220.7998 ± 4,784,171,933,553.71582 6,372.80156 ± 468.18856
BarGraph 0.86637 ± 0.00446 0.85992 ± 0.00090 0.86174 ± 0.00166 0.67459 ± 0.01158 0.77283 ± 0.02208 0.59977 ± 0.02964 0.91764 ± 0.00157 0.29773 ± 0.00308 0.59679 ± 0.00626 7,750,529 ± 0.00000 6,288,807,287,379.2002 ± 13,433,949,662,267.45508 7,405.33008 ± 376.03781
Combination 0.87096 ± 0.00140 0.86353 ± 0.00061 0.86303 ± 0.00162 0.68312 ± 0.00661 0.76562 ± 0.01866 0.61746 ± 0.02224 0.91945 ± 0.00127 0.29420 ± 0.00223 0.60300 ± 0.00371 1,587,825 ± 0.00000 67,120,074,515.2 ± 13,956,301,557.83827 6,240.85022 ± 242.35425
SuperTML 0.87948 ± 0.00260 0.86871 ± 0.00124 0.87225 ± 0.00133 0.70655 ± 0.00922 0.78543 ± 0.02582 0.64358 ± 0.03119 0.93014 ± 0.00039 0.27299 ± 0.00156 0.63169 ± 0.00416 1,400,665 ± 0.00000 3,967,548,385,024 ± 8,735,996,902,048.83398 6,664.94851 ± 385.20819
FeatureWrap 0.86406 ± 0.00207 0.85856 ± 0.00044 0.85983 ± 0.00149 0.67871 ± 0.01130 0.75208 ± 0.01847 0.61962 ± 0.03130 0.91507 ± 0.00086 0.30407 ± 0.00219 0.59524 ± 0.00729 883,257 ± 0.00000 446,669,120,432 ± 661,605,539,735.07715 820.88079 ± 319.55702
BIE 0.87849 ± 0.00181 0.86836 ± 0.00139 0.87023 ± 0.00140 0.69858 ± 0.01165 0.78679 ± 0.02008 0.62943 ± 0.03211 0.92626 ± 0.00086 0.28148 ± 0.00370 0.62403 ± 0.00750 471,417 ± 0.00000 389,425,311,723.20001 ± 852,804,903,407.22351 4,964.46268 ± 304.83804

Bioresponse

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees XGBoost 0.81847 ± 0.00477 0.88961 ± 0.00122 0.83107 ± 0.00477 11.42545 ± 0.10045
MLP MLP 0.78615 ± 0.01182 0.84194 ± 0.00613 0.79930 ± 0.01397 13.43436 ± 0.30575 1,041,409 ± 0.00000 2,082,048 ± 0.00000
ViT REFINED 0.76945 ± 0.01214 0.83747 ± 0.00358 0.78885 ± 0.00776 67.72601 ± 1.34755 4,426,201 ± 0.00000 43,919,946 ± 0.00000
ViT+MLP FeatureWrap 0.78224 ± 0.01070 0.83531 ± 0.00602 0.79224 ± 0.01093 83.09175 ± 5.88656 10,885,697 ± 0.00000 7,426,666,584 ± 652,366,161.89173
CNN REFINED 0.79183 ± 0.01769 0.85621 ± 0.00549 0.80690 ± 0.01185 56.44847 ± 0.36734 2,715,313 ± 0.00000 1,506,688,896 ± 0.00000
CNN+MLP REFINED 0.78686 ± 0.01036 0.85253 ± 0.01044 0.80513 ± 0.00924 63.84759 ± 1.33045 3,799,729 ± 0.00000 1,508,856,848 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC Train time (s) #Params FLOPs
CatBoost 1.00000 ± 0.00000 0.79396 ± 0.00562 0.81456 ± 0.00463 0.82622 ± 0.00461 0.83912 ± 0.00567 0.81377 ± 0.00783 0.87989 ± 0.00397 0.50656 ± 0.01459 0.62793 ± 0.00928 25.20507 ± 0.05985
LightGBM 0.99992 ± 0.00017 0.80568 ± 0.00570 0.80888 ± 0.00728 0.82135 ± 0.00736 0.83205 ± 0.01089 0.81115 ± 0.01459 0.87810 ± 0.00307 0.47766 ± 0.00933 0.61636 ± 0.01457 1.24869 ± 0.04968
XGBoost 1.00000 ± 0.00000 0.79858 ± 0.00323 0.81847 ± 0.00477 0.83107 ± 0.00477 0.83800 ± 0.00371 0.82426 ± 0.00680 0.88961 ± 0.00122 0.43844 ± 0.00405 0.63506 ± 0.00942 11.42545 ± 0.10045
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.83040 ± 0.02068 0.75950 ± 0.01546 0.78615 ± 0.01182 0.79930 ± 0.01397 0.81263 ± 0.01049 0.78688 ± 0.02714 0.84194 ± 0.00613 0.49659 ± 0.00617 0.57126 ± 0.02221 1,041,409 ± 0.00000 2,082,048 ± 0.00000 13.43436 ± 0.30575
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.72556 ± 0.00357 0.69663 ± 0.00726 0.69130 ± 0.00918 0.74404 ± 0.01060 0.67546 ± 0.00969 0.82885 ± 0.02909 0.72977 ± 0.01074 0.59970 ± 0.00773 0.37811 ± 0.01951 1,716,385 ± 0.00000 85,861,632 ± 0.00000 39.12782 ± 0.22880
IGTD 0.85097 ± 0.03909 0.76199 ± 0.01589 0.74458 ± 0.02887 0.78704 ± 0.01479 0.72113 ± 0.03852 0.86885 ± 0.02820 0.82965 ± 0.01231 0.55979 ± 0.03481 0.49042 ± 0.05255 4,550,263 ± 0.00000 155,284,479 ± 0.00000 53.50183 ± 0.76464
REFINED 0.81509 ± 0.02089 0.75666 ± 0.00794 0.76945 ± 0.01214 0.78885 ± 0.00776 0.78407 ± 0.02504 0.79475 ± 0.02279 0.83747 ± 0.00358 0.51418 ± 0.00312 0.53588 ± 0.02559 4,426,201 ± 0.00000 43,919,946 ± 0.00000 67.72601 ± 1.34755
FeatureWrap 0.80160 ± 0.01612 0.73428 ± 0.01234 0.72220 ± 0.01321 0.73929 ± 0.00978 0.75338 ± 0.02814 0.72721 ± 0.02862 0.78393 ± 0.01199 0.57526 ± 0.01544 0.44340 ± 0.02995 9,800,161 ± 0.00000 333,217,900 ± 0.00000 63.76220 ± 1.49083
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.82156 ± 0.01455 0.76696 ± 0.00726 0.77336 ± 0.00463 0.78515 ± 0.00592 0.80698 ± 0.00511 0.76459 ± 0.01257 0.83574 ± 0.00424 0.50571 ± 0.00383 0.54669 ± 0.00848 2,657,889 ± 0.00000 809,617,408 ± 160,014,690.16261 62.18761 ± 6.29526
IGTD 0.82278 ± 0.02320 0.74884 ± 0.01099 0.76909 ± 0.01554 0.79588 ± 0.00733 0.76581 ± 0.03178 0.83016 ± 0.02565 0.83846 ± 0.00896 0.50748 ± 0.01806 0.53493 ± 0.03077 5,871,831 ± 0.00000 3,481,690,302 ± 305,835,318.37888 73.41846 ± 1.17743
REFINED 0.83413 ± 0.02558 0.77016 ± 0.00945 0.77620 ± 0.01066 0.78976 ± 0.01479 0.80488 ± 0.02779 0.77770 ± 0.04575 0.84131 ± 0.00261 0.51031 ± 0.01926 0.55282 ± 0.02032 5,496,729 ± 0.00000 637,718,480 ± 126,040,181.42378 85.62639 ± 2.60948
FeatureWrap 0.83688 ± 0.00904 0.76838 ± 0.00937 0.78224 ± 0.01070 0.79224 ± 0.01093 0.81974 ± 0.00857 0.76656 ± 0.01340 0.83531 ± 0.00602 0.50985 ± 0.01106 0.56542 ± 0.02094 10,885,697 ± 0.00000 7,426,666,584 ± 652,366,161.89173 83.09175 ± 5.88656
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.76709 ± 0.01971 0.69663 ± 0.01091 0.70444 ± 0.01650 0.75249 ± 0.00673 0.69077 ± 0.02870 0.82951 ± 0.04423 0.75853 ± 0.01253 0.58758 ± 0.00870 0.40618 ± 0.02840 30,369 ± 0.00000 6,680,388 ± 0.00000 34.07241 ± 0.46630
IGTD 0.81432 ± 0.10319 0.62948 ± 0.02790 0.63197 ± 0.08147 0.69982 ± 0.03777 0.65871 ± 0.10504 0.79934 ± 0.19212 0.75447 ± 0.03277 0.69259 ± 0.11148 0.24764 ± 0.19178 5,417,457 ± 0.00000 978,246,400 ± 0.00000 51.55007 ± 1.14411
REFINED 0.91657 ± 0.04280 0.76590 ± 0.01434 0.79183 ± 0.01769 0.80690 ± 0.01185 0.81448 ± 0.04146 0.80262 ± 0.04169 0.85621 ± 0.00549 0.48291 ± 0.01118 0.58378 ± 0.03607 2,715,313 ± 0.00000 1,506,688,896 ± 0.00000 56.44847 ± 0.36734
FeatureWrap 0.85836 ± 0.03730 0.73961 ± 0.01788 0.73996 ± 0.01592 0.75638 ± 0.03293 0.76865 ± 0.03896 0.75279 ± 0.08763 0.80743 ± 0.00882 0.54629 ± 0.01841 0.48259 ± 0.02264 5,155,537 ± 0.00000 2,894,869,760 ± 0.00000 77.51294 ± 0.31586
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.83718 ± 0.02015 0.75489 ± 0.00879 0.77869 ± 0.00749 0.79065 ± 0.01160 0.81068 ± 0.01265 0.77246 ± 0.03098 0.84023 ± 0.00584 0.50143 ± 0.00800 0.55757 ± 0.01286 1,088,657 ± 0.00000 184,719,528 ± 0.00000 52.17665 ± 2.32481
IGTD 0.88541 ± 0.05204 0.64192 ± 0.05350 0.70764 ± 0.02508 0.73493 ± 0.04397 0.73387 ± 0.08276 0.76656 ± 0.15670 0.80774 ± 0.02291 0.60415 ± 0.08857 0.42959 ± 0.05164 6,056,049 ± 0.00000 979,523,520 ± 0.00000 59.26457 ± 1.49678
REFINED 0.94271 ± 0.02542 0.76696 ± 0.01201 0.78686 ± 0.01036 0.80513 ± 0.00924 0.80144 ± 0.04783 0.81443 ± 0.05808 0.85253 ± 0.01044 0.50015 ± 0.02944 0.57440 ± 0.02428 3,799,729 ± 0.00000 1,508,856,848 ± 0.00000 63.84759 ± 1.33045
FeatureWrap 0.90126 ± 0.03365 0.74529 ± 0.00269 0.74423 ± 0.00879 0.75265 ± 0.02133 0.79149 ± 0.03435 0.72197 ± 0.06192 0.81223 ± 0.01007 0.54734 ± 0.02279 0.49388 ± 0.01438 5,999,569 ± 0.00000 2,896,557,568 ± 0.00000 81.22601 ± 0.07450

Credit-approval

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees CatBoost 0.88462 ± 0.00000 0.94858 ± 0.00155 0.88679 ± 0.00000 4.35128 ± 0.10240
MLP MLP 0.87692 ± 0.00430 0.94468 ± 0.00151 0.88363 ± 0.00421 6.46258 ± 0.03859 27,137 ± 0.00000 53,760 ± 0.00000
ViT FeatureWrap 0.89808 ± 0.03010 0.95735 ± 0.00327 0.91357 ± 0.02319 24.34938 ± 0.09730 7,265,761 ± 0.00000 72,676,493 ± 0.00000
ViT+MLP FeatureWrap 0.89038 ± 0.01458 0.94288 ± 0.00435 0.90311 ± 0.01369 35.66323 ± 0.36383 7,325,569 ± 0.00000 3,665,691,148 ± 206,998,807.61424
CNN FeatureWrap 0.87885 ± 0.02413 0.93966 ± 0.01339 0.89497 ± 0.01722 21.80783 ± 0.12512 1,679,265 ± 0.00000 26,047,680 ± 0.00000
CNN+MLP IGTD 0.88462 ± 0.00962 0.93546 ± 0.01047 0.89128 ± 0.00918 36.58546 ± 0.15293 2,735,457 ± 0.00000 26,298,688 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC Train time (s) #Params FLOPs
CatBoost 0.85300 ± 0.00000 0.83495 ± 0.00000 0.88462 ± 0.00000 0.88679 ± 0.00000 0.97917 ± 0.00000 0.81034 ± 0.00000 0.94858 ± 0.00155 0.34290 ± 0.00159 0.78567 ± 0.00000 4.35128 ± 0.10240
LightGBM 0.76232 ± 0.00708 0.77087 ± 0.01472 0.75577 ± 0.00527 0.81780 ± 0.00321 0.70027 ± 0.00470 0.98276 ± 0.00000 0.95064 ± 0.00133 0.61286 ± 0.00230 0.54471 ± 0.00958 0.09859 ± 0.00641
XGBoost 0.71801 ± 0.00307 0.74757 ± 0.00686 0.76154 ± 0.00430 0.82133 ± 0.00266 0.70546 ± 0.00393 0.98276 ± 0.00000 0.94910 ± 0.00081 0.61517 ± 0.00064 0.55518 ± 0.00777 0.48363 ± 0.00575
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.88323 ± 0.00185 0.84466 ± 0.00000 0.87692 ± 0.00430 0.88363 ± 0.00421 0.93474 ± 0.00934 0.83793 ± 0.00944 0.94468 ± 0.00151 0.29493 ± 0.00127 0.75903 ± 0.00888 27,137 ± 0.00000 53,760 ± 0.00000 6.46258 ± 0.03859
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.84679 ± 0.00971 0.91068 ± 0.01737 0.88654 ± 0.02193 0.90270 ± 0.01715 0.86791 ± 0.03361 0.94138 ± 0.01966 0.95165 ± 0.00314 0.28738 ± 0.01023 0.77210 ± 0.04305 1,600,609 ± 0.00000 83,777,096 ± 0.00000 24.18381 ± 0.14994
IGTD 0.88447 ± 0.02241 0.87767 ± 0.00532 0.84423 ± 0.01580 0.86430 ± 0.01354 0.84125 ± 0.02458 0.88965 ± 0.02885 0.93426 ± 0.00694 0.33153 ± 0.01703 0.68444 ± 0.03281 19,520,281 ± 0.00000 667,902,402 ± 0.00000 68.75373 ± 0.10999
REFINED 0.86460 ± 0.00236 0.86796 ± 0.01107 0.87500 ± 0.00680 0.88368 ± 0.00721 0.91834 ± 0.00851 0.85172 ± 0.01542 0.94468 ± 0.00179 0.28699 ± 0.00243 0.75166 ± 0.01246 5,268,487 ± 0.00000 696,741,440 ± 0.00000 29.86047 ± 0.45036
DistanceMatrix 0.86170 ± 0.02108 0.87379 ± 0.01373 0.86538 ± 0.02150 0.87773 ± 0.01787 0.89253 ± 0.04424 0.86552 ± 0.03316 0.94205 ± 0.00545 0.29659 ± 0.01014 0.73031 ± 0.04643 3,595,591 ± 0.00000 71,253,567 ± 0.00000 28.01472 ± 0.10554
BarGraph 0.89151 ± 0.00664 0.88544 ± 0.02105 0.86538 ± 0.01799 0.87968 ± 0.01632 0.87735 ± 0.02393 0.88276 ± 0.02833 0.93486 ± 0.00285 0.31011 ± 0.01131 0.72776 ± 0.03709 1,036,999 ± 0.00000 20,876,839 ± 0.00000 33.32826 ± 2.41426
Combination 0.88696 ± 0.01339 0.87573 ± 0.01064 0.86923 ± 0.01874 0.88301 ± 0.01423 0.88397 ± 0.03368 0.88276 ± 0.00771 0.93613 ± 0.00461 0.31838 ± 0.01974 0.73552 ± 0.03934 2,364,615 ± 0.00000 47,539,495 ± 0.00000 43.79120 ± 0.31413
SuperTML 0.85010 ± 0.02483 0.87184 ± 0.02513 0.86731 ± 0.01720 0.88065 ± 0.00823 0.89316 ± 0.06675 0.87586 ± 0.06264 0.95547 ± 0.00301 0.28118 ± 0.00674 0.73949 ± 0.03251 11,972,449 ± 0.00000 1,580,762,012 ± 0.00000 55.46818 ± 0.95789
FeatureWrap 0.84969 ± 0.01540 0.91262 ± 0.01535 0.89808 ± 0.03010 0.91357 ± 0.02319 0.87394 ± 0.04923 0.95862 ± 0.00944 0.95735 ± 0.00327 0.26809 ± 0.01913 0.79724 ± 0.05758 7,265,761 ± 0.00000 72,676,493 ± 0.00000 24.34938 ± 0.09730
BIE 0.88282 ± 0.02517 0.87767 ± 0.00868 0.87308 ± 0.01580 0.88563 ± 0.01540 0.89001 ± 0.02562 0.88276 ± 0.03738 0.94678 ± 0.01051 0.28848 ± 0.02308 0.74448 ± 0.03101 1,831,681 ± 0.00000 62,989,904 ± 0.00000 31.80109 ± 0.45090
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.86211 ± 0.03239 0.88350 ± 0.01535 0.87308 ± 0.02394 0.88714 ± 0.01516 0.88942 ± 0.05987 0.88965 ± 0.04496 0.94145 ± 0.01022 0.30223 ± 0.02367 0.74784 ± 0.04481 2,153,313 ± 0.00000 774,421,568 ± 153,058,501.50243 36.11794 ± 0.54655
IGTD 0.90228 ± 0.02078 0.86602 ± 0.01990 0.85577 ± 0.02255 0.86746 ± 0.02201 0.88956 ± 0.03197 0.84828 ± 0.04463 0.93516 ± 0.00514 0.32251 ± 0.02280 0.71212 ± 0.04505 19,548,953 ± 0.00000 6,611,922,832 ± 1,306,795,991.39943 88.77799 ± 1.40963
REFINED 0.86335 ± 0.00414 0.86019 ± 0.00868 0.87692 ± 0.00430 0.88408 ± 0.00269 0.93162 ± 0.01586 0.84138 ± 0.00771 0.95052 ± 0.00314 0.27924 ± 0.00912 0.75825 ± 0.01185 5,142,983 ± 0.00000 13,348,791,360 ± 1,172,571,797.4438 37.56043 ± 0.44217
DistanceMatrix 0.87371 ± 0.00146 0.85437 ± 0.01189 0.87308 ± 0.00430 0.87775 ± 0.00454 0.94842 ± 0.01573 0.81724 ± 0.01542 0.93883 ± 0.00282 0.30097 ± 0.01016 0.75654 ± 0.00987 3,738,311 ± 0.00000 779,787,256 ± 154,118,988.7083 33.55061 ± 1.04348
BarGraph 0.90559 ± 0.01386 0.88155 ± 0.01266 0.87308 ± 0.01053 0.88457 ± 0.00988 0.89774 ± 0.01961 0.87241 ± 0.02313 0.93313 ± 0.00213 0.31967 ± 0.01001 0.74466 ± 0.02161 1,084,551 ± 0.00000 803,412,036 ± 45,368,070.23845 47.16871 ± 1.24050
Combination 0.87246 ± 0.01673 0.86019 ± 0.02532 0.87308 ± 0.00430 0.88189 ± 0.00790 0.91746 ± 0.03598 0.85172 ± 0.04496 0.93493 ± 0.00697 0.31712 ± 0.01660 0.75004 ± 0.00846 2,436,903 ± 0.00000 527,485,752 ± 104,253,525.60042 58.56323 ± 6.61817
SuperTML 0.87205 ± 0.03957 0.86602 ± 0.02105 0.86346 ± 0.01850 0.87717 ± 0.01091 0.88901 ± 0.06413 0.87241 ± 0.06047 0.93801 ± 0.01346 0.30456 ± 0.03170 0.73106 ± 0.03564 12,460,001 ± 0.00000 30,112,373,304 ± 2,645,102,372.0525 74.32829 ± 5.53914
FeatureWrap 0.89317 ± 0.02145 0.87961 ± 0.02013 0.89038 ± 0.01458 0.90311 ± 0.01369 0.89089 ± 0.02661 0.91724 ± 0.03738 0.94288 ± 0.00435 0.28508 ± 0.01758 0.77931 ± 0.02865 7,325,569 ± 0.00000 3,665,691,148 ± 206,998,807.61424 35.66323 ± 0.36383
BIE 0.88654 ± 0.00556 0.86602 ± 0.01868 0.88462 ± 0.00962 0.89051 ± 0.00897 0.94643 ± 0.02228 0.84138 ± 0.01889 0.95232 ± 0.00606 0.27763 ± 0.01075 0.77586 ± 0.02049 1,859,585 ± 0.00000 1,387,447,200 ± 121,874,813.47842 40.93451 ± 0.83433
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.89068 ± 0.01271 0.86990 ± 0.02437 0.87885 ± 0.01609 0.88831 ± 0.01599 0.91333 ± 0.01960 0.86552 ± 0.03316 0.93920 ± 0.00886 0.32099 ± 0.02614 0.75827 ± 0.03103 108,793 ± 0.00000 16,313,808 ± 0.00000 22.76856 ± 0.21394
IGTD 0.90393 ± 0.00999 0.84272 ± 0.03527 0.85577 ± 0.01923 0.86486 ± 0.02211 0.90302 ± 0.01110 0.83103 ± 0.04463 0.93861 ± 0.00790 0.33714 ± 0.04084 0.71460 ± 0.03237 2,758,497 ± 0.00000 26,344,896 ± 0.00000 34.86336 ± 0.12589
REFINED 0.90104 ± 0.01422 0.85049 ± 0.01107 0.86731 ± 0.01971 0.87678 ± 0.02234 0.90918 ± 0.04680 0.85172 ± 0.06744 0.94318 ± 0.00314 0.33025 ± 0.00821 0.73999 ± 0.03647 2,112,225 ± 0.00000 20,382,208 ± 0.00000 19.94357 ± 0.08692
DistanceMatrix 0.87081 ± 0.01041 0.88544 ± 0.01266 0.85577 ± 0.02150 0.87059 ± 0.01765 0.87447 ± 0.04377 0.86897 ± 0.03575 0.94071 ± 0.00797 0.30352 ± 0.01824 0.71000 ± 0.04691 431,553 ± 0.00000 321,349,776 ± 0.00000 32.35910 ± 2.07113
BarGraph 0.87743 ± 0.00846 0.84854 ± 0.01764 0.87115 ± 0.01994 0.87950 ± 0.01609 0.92317 ± 0.04319 0.84138 ± 0.02557 0.94483 ± 0.00932 0.28156 ± 0.01421 0.74679 ± 0.04371 189,889 ± 0.00000 132,799,648 ± 0.00000 24.68416 ± 0.52450
Combination 0.85756 ± 0.02178 0.86990 ± 0.01893 0.87692 ± 0.02085 0.88591 ± 0.02024 0.91658 ± 0.02910 0.85862 ± 0.03932 0.93801 ± 0.00948 0.29441 ± 0.01778 0.75576 ± 0.04130 1,126,289 ± 0.00000 729,226,960 ± 0.00000 30.61405 ± 0.78141
SuperTML 0.86170 ± 0.03083 0.87379 ± 0.01942 0.85962 ± 0.03160 0.87766 ± 0.02171 0.86397 ± 0.06470 0.89655 ± 0.04043 0.93546 ± 0.01064 0.31527 ± 0.01634 0.71950 ± 0.06294 357,681 ± 0.00000 244,017,024 ± 0.00000 56.27273 ± 1.87451
FeatureWrap 0.86128 ± 0.02034 0.89709 ± 0.03039 0.87885 ± 0.02413 0.89497 ± 0.01722 0.87491 ± 0.06307 0.92069 ± 0.04152 0.93966 ± 0.01339 0.31791 ± 0.03718 0.75874 ± 0.05186 1,679,265 ± 0.00000 26,047,680 ± 0.00000 21.80783 ± 0.12512
BIE 0.99959 ± 0.00093 0.89709 ± 0.02437 0.82692 ± 0.02040 0.85457 ± 0.01417 0.80599 ± 0.02899 0.91034 ± 0.01889 0.90180 ± 0.01179 0.49047 ± 0.09350 0.65132 ± 0.03901 1,219,369 ± 0.00000 452,641,280 ± 0.00000 23.68857 ± 1.57080
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.86915 ± 0.01415 0.86602 ± 0.01440 0.86731 ± 0.02489 0.87889 ± 0.02100 0.89853 ± 0.04504 0.86207 ± 0.03448 0.93636 ± 0.00426 0.30994 ± 0.03336 0.73497 ± 0.05269 170,793 ± 0.00000 16,437,264 ± 0.00000 23.51064 ± 1.06906
IGTD 0.90435 ± 0.00895 0.85049 ± 0.01303 0.88462 ± 0.00962 0.89128 ± 0.00918 0.93942 ± 0.01918 0.84828 ± 0.01889 0.93546 ± 0.01047 0.31789 ± 0.02048 0.77397 ± 0.02008 2,735,457 ± 0.00000 26,298,688 ± 0.00000 36.58546 ± 0.15293
REFINED 0.89524 ± 0.00910 0.84660 ± 0.01266 0.87885 ± 0.00860 0.88479 ± 0.00862 0.94184 ± 0.01278 0.83448 ± 0.01542 0.94160 ± 0.00370 0.30438 ± 0.00790 0.76438 ± 0.01678 2,491,169 ± 0.00000 21,139,456 ± 0.00000 21.89030 ± 0.07673
DistanceMatrix 0.85632 ± 0.02390 0.85243 ± 0.02417 0.88077 ± 0.01874 0.89164 ± 0.01540 0.90919 ± 0.05523 0.87931 ± 0.05172 0.94430 ± 0.00532 0.31482 ± 0.02456 0.76424 ± 0.03944 488,481 ± 0.00000 321,463,144 ± 0.00000 35.87942 ± 2.03683
BarGraph 0.88157 ± 0.01220 0.84078 ± 0.01764 0.87308 ± 0.01426 0.87865 ± 0.01386 0.94121 ± 0.01852 0.82414 ± 0.01889 0.94348 ± 0.00464 0.29809 ± 0.00829 0.75430 ± 0.02864 219,425 ± 0.00000 132,858,336 ± 0.00000 35.27408 ± 3.46612
Combination 0.86584 ± 0.02241 0.84272 ± 0.01595 0.85769 ± 0.02753 0.87115 ± 0.02328 0.88503 ± 0.05529 0.86207 ± 0.05314 0.93973 ± 0.00262 0.32083 ± 0.02672 0.71694 ± 0.05566 1,317,009 ± 0.00000 15,321,762,960 ± 0.00000 49.18553 ± 2.91262
SuperTML 0.90145 ± 0.03785 0.86602 ± 0.02214 0.86731 ± 0.00805 0.88339 ± 0.00958 0.86725 ± 0.03440 0.90345 ± 0.05115 0.93666 ± 0.00719 0.33066 ± 0.02660 0.73433 ± 0.01701 441,649 ± 0.00000 244,184,512 ± 0.00000 56.67473 ± 4.74708
FeatureWrap 0.88654 ± 0.01184 0.86214 ± 0.02318 0.87115 ± 0.00860 0.87876 ± 0.00864 0.92557 ± 0.03114 0.83793 ± 0.03132 0.94408 ± 0.00311 0.29397 ± 0.01804 0.74744 ± 0.01996 1,775,201 ± 0.00000 26,239,200 ± 0.00000 23.54730 ± 0.12061
BIE 0.97971 ± 0.02833 0.87573 ± 0.00812 0.85385 ± 0.02085 0.87046 ± 0.01693 0.86260 ± 0.03206 0.87931 ± 0.02112 0.92144 ± 0.01176 0.35882 ± 0.03894 0.70393 ± 0.04291 1,475,625 ± 0.00000 453,152,896 ± 0.00000 26.65689 ± 1.21066

Dengue chikunguya bin

Source: Mendeley Data

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees CatBoost 0.77381 ± 0.00152 0.84859 ± 0.00078 0.76203 ± 0.00216 18.33763 ± 0.20578
MLP MLP 0.75250 ± 0.00428 0.82654 ± 0.00162 0.73198 ± 0.00265 32.29673 ± 0.16948 49,665 ± 0.00000 98,944 ± 0.00000
ViT SuperTML 0.76519 ± 0.00515 0.83537 ± 0.00185 0.75174 ± 0.00573 1,542.52599 ± 158.45189 3,580,129 ± 0.00000 57,361,400,250.6 ± 116,728,731,983.64003
ViT+MLP SuperTML 0.76356 ± 0.00603 0.83214 ± 0.00350 0.74648 ± 0.00806 1,777.37847 ± 255.34242 3,795,105 ± 0.00000 1,011,732,695,367.59998 ± 2,196,801,926,319.54199
CNN SuperTML 0.76496 ± 0.00412 0.83152 ± 0.00320 0.75360 ± 0.00620 1,431.14861 ± 148.66043 655,073 ± 0.00000 58,837,451,833.6 ± 128,193,210,627.53494
CNN+MLP SuperTML 0.76577 ± 0.00374 0.83457 ± 0.00086 0.75967 ± 0.00213 1,488.9573 ± 134.62188 718,977 ± 0.00000 26,027,278,931.2 ± 40,624,508,189.80072
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC Train time (s) #Params FLOPs
CatBoost 0.84445 ± 0.00445 0.79685 ± 0.00350 0.77381 ± 0.00152 0.76203 ± 0.00216 0.80388 ± 0.00192 0.72433 ± 0.00431 0.84859 ± 0.00078 0.48129 ± 0.00036 0.55032 ± 0.00287 18.33763 ± 0.20578
LightGBM 0.82621 ± 0.00128 0.79476 ± 0.00146 0.76601 ± 0.00567 0.75396 ± 0.00664 0.79484 ± 0.00538 0.71711 ± 0.00887 0.84481 ± 0.00028 0.48559 ± 0.00063 0.53459 ± 0.01116 0.66354 ± 0.06674
XGBoost 0.84830 ± 0.00055 0.79080 ± 0.00096 0.77055 ± 0.00133 0.75896 ± 0.00132 0.79934 ± 0.00258 0.72247 ± 0.00241 0.85063 ± 0.00045 0.47857 ± 0.00069 0.54362 ± 0.00277 1.87975 ± 0.05041
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.79361 ± 0.00407 0.78626 ± 0.00193 0.75250 ± 0.00428 0.73198 ± 0.00265 0.79837 ± 0.01122 0.67590 ± 0.00556 0.82654 ± 0.00162 0.52665 ± 0.01087 0.51113 ± 0.01005 49,665 ± 0.00000 98,944 ± 0.00000 32.29673 ± 0.16948
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.78670 ± 0.00351 0.77787 ± 0.00525 0.75215 ± 0.00440 0.73795 ± 0.00382 0.78317 ± 0.01386 0.69802 ± 0.01425 0.82601 ± 0.00283 0.51071 ± 0.00549 0.50754 ± 0.00993 37,861,015 ± 0.00000 1,293,369,808 ± 0.00000 411.74121 ± 0.77761
IGTD 0.79044 ± 0.00466 0.78439 ± 0.00581 0.75367 ± 0.00289 0.73667 ± 0.00502 0.79174 ± 0.01661 0.68941 ± 0.02047 0.82431 ± 0.00290 0.51494 ± 0.00502 0.51201 ± 0.00780 4,190,743 ± 0.00000 78,083,135 ± 0.00000 121.39114 ± 0.81683
REFINED 0.79436 ± 0.00477 0.78626 ± 0.00184 0.75786 ± 0.00519 0.73684 ± 0.00985 0.80677 ± 0.00859 0.67846 ± 0.02067 0.82813 ± 0.00187 0.50985 ± 0.00669 0.52256 ± 0.00842 7,342,369 ± 0.00000 73,412,898 ± 0.00000 237.12990 ± 1.57417
DistanceMatrix 0.79483 ± 0.00728 0.78451 ± 0.00250 0.75926 ± 0.00249 0.74453 ± 0.00775 0.79344 ± 0.01756 0.70221 ± 0.02597 0.82720 ± 0.00331 0.51223 ± 0.00760 0.52250 ± 0.00606 13,839,809 ± 0.00000 135,836,308 ± 0.00000 280.96291 ± 5.19273
BarGraph 0.79546 ± 0.00396 0.78684 ± 0.00442 0.76216 ± 0.00383 0.74587 ± 0.00265 0.80087 ± 0.00926 0.69802 ± 0.00470 0.83119 ± 0.00293 0.51191 ± 0.00573 0.52876 ± 0.00867 3,948,545 ± 0.00000 37,579,600 ± 0.00000 102.67005 ± 0.95858
Combination 0.79391 ± 0.00334 0.78579 ± 0.00223 0.75867 ± 0.00346 0.74347 ± 0.00374 0.79352 ± 0.00676 0.69942 ± 0.00705 0.82984 ± 0.00273 0.50759 ± 0.00658 0.52106 ± 0.00722 26,974,465 ± 0.00000 80,410,966,806 ± 176,895,483,141.79083 1,163.32768 ± 262.76441
SuperTML 0.79558 ± 0.00533 0.78870 ± 0.00437 0.76519 ± 0.00515 0.75174 ± 0.00573 0.79756 ± 0.01036 0.71106 ± 0.01154 0.83537 ± 0.00185 0.50311 ± 0.00267 0.53364 ± 0.01077 3,580,129 ± 0.00000 57,361,400,250.6 ± 116,728,731,983.64003 1,542.52599 ± 158.45189
FeatureWrap 0.77636 ± 0.00341 0.76622 ± 0.00370 0.73842 ± 0.00550 0.71831 ± 0.00799 0.77822 ± 0.01116 0.66729 ± 0.01702 0.81591 ± 0.00189 0.52766 ± 0.00519 0.48193 ± 0.01103 9,475,609 ± 0.00000 329,832,766,077.59998 ± 721,087,062,859.04285 459.02159 ± 129.85201
BIE 0.80192 ± 0.00874 0.78381 ± 0.00577 0.76252 ± 0.00123 0.75060 ± 0.00198 0.79025 ± 0.00376 0.71479 ± 0.00570 0.82890 ± 0.00235 0.50835 ± 0.00301 0.52746 ± 0.00251 16,484,193 ± 0.00000 2,471,681,549,289.6001 ± 5,428,955,286,813.38867 1,305.07611 ± 303.07968
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.79638 ± 0.00401 0.78486 ± 0.00367 0.75506 ± 0.00161 0.73767 ± 0.00403 0.79426 ± 0.01143 0.68894 ± 0.01490 0.82593 ± 0.00241 0.52127 ± 0.00595 0.51486 ± 0.00463 38,117,399 ± 0.00000 429,126,782,022.40002 ± 934,424,394,897.82361 1,300.61963 ± 320.98518
IGTD 0.79910 ± 0.00335 0.78486 ± 0.00456 0.75623 ± 0.00312 0.73737 ± 0.00728 0.79927 ± 0.01021 0.68475 ± 0.01876 0.82426 ± 0.00154 0.52813 ± 0.00397 0.51801 ± 0.00523 4,122,519 ± 0.00000 33,085,208,539.6 ± 70,040,658,830.16013 610.68185 ± 172.91366
REFINED 0.79286 ± 0.00469 0.78497 ± 0.00199 0.75635 ± 0.00290 0.74048 ± 0.00257 0.79211 ± 0.00645 0.69523 ± 0.00503 0.82637 ± 0.00128 0.51844 ± 0.00432 0.51660 ± 0.00630 7,393,185 ± 0.00000 66,861,683,869.6 ± 142,595,257,258.11005 1,116.93216 ± 318.84188
DistanceMatrix 0.79391 ± 0.00264 0.78812 ± 0.00262 0.75669 ± 0.00214 0.73828 ± 0.00191 0.79889 ± 0.00951 0.68638 ± 0.00919 0.82638 ± 0.00133 0.52348 ± 0.00401 0.51865 ± 0.00561 14,030,369 ± 0.00000 735,078,836,909.59998 ± 1,623,592,589,055.5498 1,398.96918 ± 401.01450
BarGraph 0.80155 ± 0.00745 0.78893 ± 0.00360 0.76275 ± 0.00320 0.74863 ± 0.00609 0.79620 ± 0.01265 0.70687 ± 0.01843 0.83142 ± 0.00322 0.51920 ± 0.00647 0.52910 ± 0.00669 4,180,033 ± 0.00000 26,258,935,508.8 ± 54,578,732,372.61453 541.91954 ± 149.32681
Combination 0.79311 ± 0.00439 0.78660 ± 0.00356 0.75413 ± 0.00252 0.73493 ± 0.00231 0.79741 ± 0.01073 0.68172 ± 0.01033 0.82560 ± 0.00200 0.52567 ± 0.00832 0.51382 ± 0.00655 27,468,833 ± 0.00000 1,025,750,154,648.40002 ± 2,246,662,723,183.00537 1,776.51478 ± 517.27827
SuperTML 0.79923 ± 0.00855 0.78975 ± 0.00578 0.76356 ± 0.00603 0.74648 ± 0.00806 0.80467 ± 0.01058 0.69639 ± 0.01576 0.83214 ± 0.00350 0.50869 ± 0.00323 0.53211 ± 0.01183 3,795,105 ± 0.00000 1,011,732,695,367.59998 ± 2,196,801,926,319.54199 1,777.37847 ± 255.34242
FeatureWrap 0.79666 ± 0.00211 0.78742 ± 0.00229 0.75565 ± 0.00215 0.73703 ± 0.00621 0.79812 ± 0.01516 0.68522 ± 0.02017 0.82669 ± 0.00224 0.52503 ± 0.00428 0.51682 ± 0.00571 9,617,049 ± 0.00000 845,407,410,135.19995 ± 1,807,053,346,291.28271 808.30747 ± 277.02514
BIE 0.79705 ± 0.00581 0.78649 ± 0.00200 0.76042 ± 0.00275 0.74338 ± 0.00327 0.80036 ± 0.00689 0.69406 ± 0.00787 0.82845 ± 0.00135 0.51385 ± 0.00368 0.52555 ± 0.00591 16,286,753 ± 0.00000 8,700,046,055,998.40039 ± 19,108,366,057,049.83203 2,496.42857 ± 811.76486
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.78343 ± 0.00358 0.77472 ± 0.00317 0.75483 ± 0.00398 0.73756 ± 0.00460 0.79378 ± 0.01417 0.68917 ± 0.01544 0.82661 ± 0.00163 0.50848 ± 0.00248 0.51438 ± 0.00927 55,209 ± 0.00000 21,066,396,060.8 ± 33,262,000,708.4252 445.48115 ± 141.94076
IGTD 0.79121 ± 0.00452 0.78381 ± 0.00483 0.75472 ± 0.00525 0.73541 ± 0.00795 0.79818 ± 0.00664 0.68196 ± 0.01462 0.82477 ± 0.00422 0.51912 ± 0.00610 0.51500 ± 0.00967 1,726,097 ± 0.00000 35,408,168,048 ± 35,082,886,876.55688 770.37093 ± 265.31412
REFINED 0.79441 ± 0.00464 0.78392 ± 0.00285 0.75623 ± 0.00245 0.73979 ± 0.00437 0.79327 ± 0.00312 0.69313 ± 0.00919 0.82636 ± 0.00202 0.51456 ± 0.00652 0.51663 ± 0.00421 594,577 ± 0.00000 6,874,985,318.4 ± 10,840,271,169.55768 487.88913 ± 171.38286
DistanceMatrix 0.79528 ± 0.00807 0.78544 ± 0.00433 0.75448 ± 0.00728 0.73550 ± 0.00727 0.79721 ± 0.00999 0.68265 ± 0.00543 0.82276 ± 0.00141 0.52153 ± 0.00638 0.51431 ± 0.01502 47,329 ± 0.00000 125,413,487,040 ± 271,898,806,184.23105 696.09263 ± 221.51648
BarGraph 0.79818 ± 0.00615 0.78987 ± 0.00593 0.76112 ± 0.00766 0.74644 ± 0.00810 0.79567 ± 0.01647 0.70338 ± 0.01720 0.82965 ± 0.00462 0.50822 ± 0.00744 0.52604 ± 0.01620 1,246,593 ± 0.00000 143,853,906,534.39999 ± 267,314,456,779.50229 633.02015 ± 197.07502
Combination 0.79860 ± 0.00783 0.78952 ± 0.00182 0.76228 ± 0.00208 0.74667 ± 0.00537 0.79974 ± 0.01894 0.70105 ± 0.02342 0.83534 ± 0.00297 0.50503 ± 0.00498 0.52912 ± 0.00709 2,743,089 ± 0.00000 2,051,088,364,646.3999 ± 2,762,851,296,694.4126 711.06372 ± 197.85187
SuperTML 0.80142 ± 0.01416 0.78672 ± 0.00486 0.76496 ± 0.00412 0.75360 ± 0.00620 0.79230 ± 0.01688 0.71921 ± 0.02202 0.83152 ± 0.00320 0.51131 ± 0.01168 0.53263 ± 0.00931 655,073 ± 0.00000 58,837,451,833.6 ± 128,193,210,627.53494 1,431.14861 ± 148.66043
FeatureWrap 0.78507 ± 0.00438 0.77729 ± 0.00564 0.75448 ± 0.00457 0.73475 ± 0.00605 0.79935 ± 0.01627 0.68033 ± 0.01825 0.83036 ± 0.00136 0.50838 ± 0.00352 0.51501 ± 0.01073 26,873 ± 0.00000 670,474,232.8 ± 1,478,111,954.598 448.96570 ± 144.08506
BIE 0.78545 ± 0.00776 0.77822 ± 0.00735 0.75681 ± 0.00601 0.74026 ± 0.01121 0.79517 ± 0.02488 0.69406 ± 0.03449 0.82411 ± 0.00330 0.51322 ± 0.00500 0.51876 ± 0.01317 193,937 ± 0.00000 46,562,342,956.8 ± 101,317,122,478.31845 415.89008 ± 111.37664
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.79107 ± 0.00604 0.78125 ± 0.00421 0.75378 ± 0.00288 0.73228 ± 0.00313 0.80264 ± 0.01313 0.67357 ± 0.01314 0.82741 ± 0.00180 0.51278 ± 0.00632 0.51445 ± 0.00766 101,369 ± 0.00000 26,112,851,500.8 ± 56,223,615,942.36392 971.35377 ± 362.51331
IGTD 0.79743 ± 0.00296 0.78521 ± 0.00312 0.75320 ± 0.00632 0.73411 ± 0.00798 0.79558 ± 0.00554 0.68149 ± 0.01085 0.82428 ± 0.00306 0.51631 ± 0.00464 0.51171 ± 0.01223 1,742,513 ± 0.00000 84,773,405,875.2 ± 180,144,694,113.31934 1,624.47672 ± 618.84157
REFINED 0.79406 ± 0.00469 0.78206 ± 0.00437 0.75530 ± 0.00363 0.74004 ± 0.00273 0.78950 ± 0.01164 0.69662 ± 0.01030 0.82496 ± 0.00171 0.51333 ± 0.00362 0.51430 ± 0.00852 561,681 ± 0.00000 27,897,250,105.6 ± 59,931,665,658.70679 1,050.63638 ± 415.65452
DistanceMatrix 0.79296 ± 0.00719 0.78521 ± 0.00283 0.75693 ± 0.00360 0.73848 ± 0.00666 0.79912 ± 0.00710 0.68661 ± 0.01519 0.82477 ± 0.00161 0.52366 ± 0.00957 0.51914 ± 0.00630 107,201 ± 0.00000 241,645,307,878.39999 ± 519,791,690,920.10126 1,505.36997 ± 552.96056
BarGraph 0.80369 ± 0.00690 0.78789 ± 0.00649 0.76216 ± 0.00485 0.74884 ± 0.00624 0.79328 ± 0.00614 0.70920 ± 0.01096 0.83155 ± 0.00393 0.51126 ± 0.00697 0.52735 ± 0.00942 1,427,457 ± 0.00000 252,727,262,233.60001 ± 383,167,868,958.26599 1,434.95774 ± 526.65822
Combination 0.79481 ± 0.00555 0.78707 ± 0.00252 0.75658 ± 0.00865 0.74753 ± 0.00485 0.77841 ± 0.03227 0.72107 ± 0.03290 0.83076 ± 0.00301 0.51186 ± 0.00723 0.51589 ± 0.01978 3,186,481 ± 0.00000 4,843,369,695,616 ± 9,427,791,887,179.02344 1,489.01224 ± 502.87907
SuperTML 0.80574 ± 0.00960 0.78824 ± 0.00360 0.76577 ± 0.00374 0.75967 ± 0.00213 0.78027 ± 0.01195 0.74040 ± 0.01138 0.83457 ± 0.00086 0.51056 ± 0.00307 0.53242 ± 0.00816 718,977 ± 0.00000 26,027,278,931.2 ± 40,624,508,189.80072 1,488.9573 ± 134.62188
FeatureWrap 0.79226 ± 0.00438 0.78428 ± 0.00360 0.75390 ± 0.00374 0.73731 ± 0.00473 0.79057 ± 0.00329 0.69080 ± 0.00682 0.82511 ± 0.00417 0.52476 ± 0.00502 0.51190 ± 0.00722 86,425 ± 0.00000 631,268,136.8 ± 1,356,648,401.3246 515.40748 ± 169.17345
BIE 0.79411 ± 0.00909 0.78020 ± 0.00547 0.75728 ± 0.00359 0.75194 ± 0.00170 0.76904 ± 0.00980 0.73574 ± 0.00823 0.82298 ± 0.00244 0.51584 ± 0.00373 0.51514 ± 0.00761 283,089 ± 0.00000 64,517,300,620.8 ± 116,024,731,895.8228 510.11104 ± 144.47312

Nomao

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees XGBoost 0.97033 ± 0.00082 0.99467 ± 0.00018 0.97926 ± 0.00057 7.27351 ± 0.40088
MLP MLP 0.95722 ± 0.00156 0.98967 ± 0.00032 0.97009 ± 0.00101 104.73531 ± 8.62000 77,825 ± 0.00000 155,264 ± 0.00000
ViT BarGraph 0.96317 ± 0.00115 0.99197 ± 0.00024 0.97428 ± 0.00080 1,823.59621 ± 426.87652 14,940,295 ± 0.00000 2,729,093,792.8 ± 1,098,676,695.40115
ViT+MLP BIE 0.96174 ± 0.00318 0.99145 ± 0.00079 0.97328 ± 0.00219 2,028.60861 ± 450.41631 19,834,905 ± 0.00000 212,099,541,471.20001 ± 466,396,281,712.28033
CNN Combination 0.96414 ± 0.00246 0.99320 ± 0.00053 0.97496 ± 0.00162 4,090.50706 ± 372.66968 377,657 ± 0.00000 200,661,199,420.79999 ± 382,097,593,437.39655
CNN+MLP BIE 0.96549 ± 0.00095 0.99383 ± 0.00052 0.97591 ± 0.00063 5,218.75606 ± 376.15809 4,943,209 ± 0.00000 263,538,065,689.60001 ± 148,660,074,826.40341
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC Train time (s) #Params FLOPs
CatBoost 0.99959 ± 0.00013 0.96882 ± 0.00116 0.96866 ± 0.00072 0.97813 ± 0.00049 0.97534 ± 0.00120 0.98094 ± 0.00059 0.99455 ± 0.00018 0.09178 ± 0.00200 0.92294 ± 0.00183 88.42585 ± 12.09318
LightGBM 0.99996 ± 0.00000 0.96805 ± 0.00193 0.96905 ± 0.00168 0.97838 ± 0.00116 0.97643 ± 0.00203 0.98034 ± 0.00113 0.99446 ± 0.00027 0.12653 ± 0.00491 0.92397 ± 0.00418 2.86195 ± 0.74265
XGBoost 0.99996 ± 0.00000 0.97010 ± 0.00068 0.97033 ± 0.00082 0.97926 ± 0.00057 0.97796 ± 0.00083 0.98056 ± 0.00052 0.99467 ± 0.00018 0.16116 ± 0.00164 0.92717 ± 0.00202 7.27351 ± 0.40088
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.96946 ± 0.00181 0.95756 ± 0.00172 0.95722 ± 0.00156 0.97009 ± 0.00101 0.96886 ± 0.00418 0.97135 ± 0.00280 0.98967 ± 0.00032 0.11633 ± 0.00227 0.89502 ± 0.00424 77,825 ± 0.00000 155,264 ± 0.00000 104.73531 ± 8.62000
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.97018 ± 0.00175 0.95687 ± 0.00081 0.95408 ± 0.00145 0.96789 ± 0.00101 0.96703 ± 0.00287 0.96875 ± 0.00292 0.98818 ± 0.00027 0.12876 ± 0.00093 0.88738 ± 0.00360 20,832,601 ± 0.00000 321,724,384,026 ± 716,693,138,158.28979 479.35578 ± 132.34694
IGTD 0.96877 ± 0.00318 0.95609 ± 0.00148 0.95578 ± 0.00156 0.96893 ± 0.00109 0.97269 ± 0.00456 0.96523 ± 0.00454 0.98976 ± 0.00027 0.12060 ± 0.00220 0.89244 ± 0.00394 8,016,295 ± 0.00000 88,810,592,350 ± 196,489,694,368.91821 600.93735 ± 184.65323
REFINED 0.96974 ± 0.00262 0.95772 ± 0.00111 0.95776 ± 0.00143 0.97049 ± 0.00100 0.96852 ± 0.00309 0.97249 ± 0.00322 0.98975 ± 0.00041 0.11840 ± 0.00182 0.89624 ± 0.00352 6,170,215 ± 0.00000 48,069,892,848 ± 105,475,890,018.72287 273.23154 ± 93.66160
DistanceMatrix 0.97232 ± 0.00226 0.95830 ± 0.00156 0.95737 ± 0.00127 0.97011 ± 0.00085 0.97162 ± 0.00419 0.96864 ± 0.00385 0.98982 ± 0.00042 0.11436 ± 0.00176 0.89586 ± 0.00339 16,916,857 ± 0.00000 1,216,917,828,593.6001 ± 2,701,838,061,539.17529 2,003.17204 ± 442.38300
BarGraph 0.97770 ± 0.00259 0.96449 ± 0.00203 0.96317 ± 0.00115 0.97428 ± 0.00080 0.97193 ± 0.00220 0.97666 ± 0.00223 0.99197 ± 0.00024 0.10877 ± 0.00460 0.90949 ± 0.00285 14,940,295 ± 0.00000 2,729,093,792.8 ± 1,098,676,695.40115 1,823.59621 ± 426.87652
Combination 0.97471 ± 0.00235 0.96023 ± 0.00056 0.96054 ± 0.00141 0.97245 ± 0.00109 0.96991 ± 0.00366 0.97503 ± 0.00555 0.99146 ± 0.00036 0.10849 ± 0.00274 0.90309 ± 0.00299 18,955,015 ± 0.00000 324,311,687,748 ± 713,970,915,190.3125 1,817.10348 ± 424.34665
SuperTML 0.97414 ± 0.00229 0.95841 ± 0.00204 0.95834 ± 0.00202 0.97089 ± 0.00146 0.96906 ± 0.00417 0.97276 ± 0.00523 0.99021 ± 0.00054 0.11509 ± 0.00448 0.89774 ± 0.00483 29,687,425 ± 0.00000 463,065,373,002 ± 1,015,639,501,982.69202 2,317.6447 ± 598.48675
FeatureWrap 0.97463 ± 0.00264 0.95636 ± 0.00154 0.95385 ± 0.00159 0.96762 ± 0.00122 0.96977 ± 0.00259 0.96550 ± 0.00477 0.98942 ± 0.00042 0.12179 ± 0.00311 0.88739 ± 0.00324 16,593,433 ± 0.00000 14,186,899,825,777.59961 ± 31,523,326,885,631.57422 1,375.22182 ± 14.61001
BIE 0.98038 ± 0.00657 0.96012 ± 0.00249 0.96220 ± 0.00140 0.97368 ± 0.00093 0.96879 ± 0.00501 0.97866 ± 0.00451 0.99136 ± 0.00068 0.11296 ± 0.00429 0.90692 ± 0.00362 20,518,873 ± 0.00000 2,295,861,428.8 ± 466,543,598.43117 1,999.65134 ± 400.40337
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.96094 ± 0.00271 0.95079 ± 0.00089 0.94747 ± 0.00184 0.96252 ± 0.00136 0.98126 ± 0.00051 0.94449 ± 0.00249 0.98923 ± 0.00024 0.12866 ± 0.00120 0.87660 ± 0.00397 20,912,345 ± 0.00000 436,665,245,037.59998 ± 967,978,549,623.35474 536.51636 ± 122.00153
IGTD 0.95842 ± 0.00634 0.94770 ± 0.00439 0.94329 ± 0.00944 0.95929 ± 0.00722 0.98297 ± 0.00406 0.93691 ± 0.01733 0.98902 ± 0.00050 0.14727 ± 0.01828 0.86909 ± 0.01782 8,088,999 ± 0.00000 311,650,190,566.79999 ± 691,053,745,412.88818 609.21402 ± 184.93126
REFINED 0.95933 ± 0.00639 0.94553 ± 0.00425 0.94186 ± 0.00468 0.95825 ± 0.00360 0.98317 ± 0.00290 0.93463 ± 0.00926 0.98882 ± 0.00034 0.14336 ± 0.00848 0.86582 ± 0.00863 5,523,431 ± 0.00000 290,250,234,344.40002 ± 643,963,128,523.54883 310.17079 ± 98.09055
DistanceMatrix 0.96324 ± 0.00296 0.95249 ± 0.00219 0.95025 ± 0.00191 0.96463 ± 0.00141 0.97989 ± 0.00109 0.94985 ± 0.00285 0.98928 ± 0.00047 0.13087 ± 0.00376 0.88208 ± 0.00417 16,829,369 ± 0.00000 3,244,725,476.8 ± 614,858,240.92529 2,092.59517 ± 441.59267
BarGraph 0.97189 ± 0.00509 0.95783 ± 0.00473 0.95486 ± 0.00401 0.96791 ± 0.00305 0.98262 ± 0.00345 0.95370 ± 0.00890 0.99149 ± 0.00041 0.12608 ± 0.01130 0.89311 ± 0.00773 15,036,711 ± 0.00000 5,859,842,658.4 ± 1,105,429,326.47811 1,871.91148 ± 411.84487
Combination 0.97631 ± 0.00380 0.96116 ± 0.00233 0.96108 ± 0.00115 0.97288 ± 0.00092 0.96838 ± 0.00441 0.97747 ± 0.00597 0.99197 ± 0.00021 0.11065 ± 0.00206 0.90424 ± 0.00238 19,034,759 ± 0.00000 14,574,778,889 ± 29,109,194,669.32748 1,889.06406 ± 414.40158
SuperTML 0.97175 ± 0.00231 0.96039 ± 0.00149 0.95745 ± 0.00219 0.97026 ± 0.00148 0.96872 ± 0.00491 0.97184 ± 0.00394 0.99026 ± 0.00038 0.11335 ± 0.00316 0.89557 ± 0.00561 28,886,721 ± 0.00000 4,418,466,958 ± 2,306,385,594.11359 2,432.58342 ± 602.41558
FeatureWrap 0.96767 ± 0.00320 0.95787 ± 0.00098 0.95729 ± 0.00131 0.97018 ± 0.00091 0.96770 ± 0.00375 0.97271 ± 0.00381 0.98966 ± 0.00036 0.11717 ± 0.00241 0.89505 ± 0.00335 16,689,785 ± 0.00000 10,110,585,872,880.80078 ± 22,502,629,053,303.78906 1,459.74151 ± 16.63757
BIE 0.97529 ± 0.00112 0.96039 ± 0.00146 0.96174 ± 0.00318 0.97328 ± 0.00219 0.97107 ± 0.00413 0.97552 ± 0.00271 0.99145 ± 0.00079 0.10494 ± 0.00498 0.90599 ± 0.00798 19,834,905 ± 0.00000 212,099,541,471.20001 ± 466,396,281,712.28033 2,028.60861 ± 450.41631
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.97399 ± 0.00341 0.95791 ± 0.00113 0.95834 ± 0.00131 0.97091 ± 0.00090 0.96850 ± 0.00407 0.97335 ± 0.00402 0.98945 ± 0.00015 0.11745 ± 0.00177 0.89763 ± 0.00339 4,824,641 ± 0.00000 934,910,685,593.59998 ± 1,951,421,727,771.86011 248.10662 ± 49.49744
IGTD 0.97955 ± 0.00127 0.95872 ± 0.00176 0.94619 ± 0.00992 0.96205 ± 0.00776 0.96697 ± 0.01112 0.95770 ± 0.02445 0.98718 ± 0.00128 0.14034 ± 0.02637 0.87079 ± 0.01815 1,189,033 ± 0.00000 45,912,542,356.8 ± 100,013,680,314.8199 229.56258 ± 75.03398
REFINED 0.97595 ± 0.00309 0.95733 ± 0.00159 0.96027 ± 0.00180 0.97231 ± 0.00119 0.96823 ± 0.00414 0.97644 ± 0.00276 0.99061 ± 0.00057 0.11056 ± 0.00417 0.90217 ± 0.00466 5,396,049 ± 0.00000 347,208,752,755.20001 ± 436,028,655,509.88867 271.48560 ± 87.74921
DistanceMatrix 0.98507 ± 0.00388 0.96220 ± 0.00180 0.95996 ± 0.00270 0.97201 ± 0.00194 0.97062 ± 0.00553 0.97346 ± 0.00678 0.99125 ± 0.00093 0.11265 ± 0.00536 0.90186 ± 0.00639 2,551,521 ± 0.00000 2,950,933,827,148.7998 ± 5,449,995,671,441.93066 7,836.87877 ± 368.73048
BarGraph 0.99080 ± 0.00983 0.96437 ± 0.00295 0.96174 ± 0.00237 0.97326 ± 0.00174 0.97158 ± 0.00309 0.97498 ± 0.00542 0.99228 ± 0.00074 0.10184 ± 0.00637 0.90612 ± 0.00545 2,700,657 ± 0.00000 135,052,239,059.2 ± 83,035,178,316.82898 2,877.01942 ± 392.42460
Combination 0.99160 ± 0.00358 0.96499 ± 0.00184 0.96414 ± 0.00246 0.97496 ± 0.00162 0.97297 ± 0.00605 0.97698 ± 0.00371 0.99320 ± 0.00053 0.09610 ± 0.00439 0.91196 ± 0.00645 377,657 ± 0.00000 200,661,199,420.79999 ± 382,097,593,437.39655 4,090.50706 ± 372.66968
SuperTML 0.99957 ± 0.00062 0.96913 ± 0.00188 0.96371 ± 0.00144 0.97466 ± 0.00102 0.97246 ± 0.00288 0.97688 ± 0.00331 0.99325 ± 0.00021 0.09397 ± 0.00214 0.91086 ± 0.00350 3,470,009 ± 0.00000 225,938,498,278.39999 ± 51,363,290,437.87039 5,664.23751 ± 603.52141
FeatureWrap 0.98454 ± 0.00460 0.95992 ± 0.00153 0.95532 ± 0.00118 0.96885 ± 0.00082 0.96508 ± 0.00214 0.97265 ± 0.00198 0.98911 ± 0.00030 0.11883 ± 0.00177 0.88998 ± 0.00298 2,675,753 ± 0.00000 615,941,707,929.59998 ± 1,234,939,973,572.32837 247.36853 ± 73.54608
BIE 0.99947 ± 0.00036 0.96778 ± 0.00294 0.96325 ± 0.00301 0.97436 ± 0.00211 0.97121 ± 0.00565 0.97758 ± 0.00614 0.99305 ± 0.00082 0.10405 ± 0.00443 0.90972 ± 0.00734 4,865,385 ± 0.00000 82,842,842,886.39999 ± 19,048,789,357.48722 5,278.22185 ± 377.79029
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.96902 ± 0.00397 0.95741 ± 0.00181 0.95536 ± 0.00228 0.96878 ± 0.00161 0.96780 ± 0.00309 0.96978 ± 0.00382 0.98840 ± 0.00122 0.12401 ± 0.00645 0.89050 ± 0.00552 4,944,961 ± 0.00000 1,009,951,291,769.59998 ± 2,250,904,739,374.57715 292.18680 ± 68.75808
IGTD 0.97907 ± 0.00356 0.95911 ± 0.00166 0.95222 ± 0.00260 0.96665 ± 0.00162 0.96425 ± 0.00779 0.96913 ± 0.00525 0.98833 ± 0.00069 0.12705 ± 0.00520 0.88267 ± 0.00725 1,176,537 ± 0.00000 34,373,092,035.2 ± 74,197,311,611.16965 289.74496 ± 97.68266
REFINED 0.98069 ± 0.00354 0.96043 ± 0.00074 0.96066 ± 0.00107 0.97250 ± 0.00067 0.97115 ± 0.00492 0.97390 ± 0.00422 0.99099 ± 0.00039 0.11247 ± 0.00182 0.90349 ± 0.00302 4,991,057 ± 0.00000 687,744,956,620.80005 ± 983,491,552,191.08459 351.81945 ± 118.21687
DistanceMatrix 0.98581 ± 0.00299 0.96298 ± 0.00188 0.96182 ± 0.00117 0.97329 ± 0.00083 0.97284 ± 0.00545 0.97379 ± 0.00574 0.99216 ± 0.00067 0.10285 ± 0.00299 0.90652 ± 0.00298 2,481,313 ± 0.00000 39,888,640,966,214.39844 ± 87,267,777,539,044.9375 7,832.55724 ± 364.07442
BarGraph 0.99333 ± 0.00371 0.96518 ± 0.00120 0.96356 ± 0.00130 0.97455 ± 0.00090 0.97247 ± 0.00366 0.97666 ± 0.00370 0.99210 ± 0.00042 0.10200 ± 0.00418 0.91051 ± 0.00330 2,778,481 ± 0.00000 192,841,363,641.60001 ± 60,978,589,927.0471 2,880.8014 ± 398.38785
Combination 0.99374 ± 0.00233 0.96735 ± 0.00228 0.96503 ± 0.00104 0.97554 ± 0.00074 0.97470 ± 0.00547 0.97644 ± 0.00579 0.99383 ± 0.00047 0.09629 ± 0.00476 0.91435 ± 0.00259 455,481 ± 0.00000 129,644,373,555.2 ± 42,081,651,568.24149 4,018.11123 ± 361.36135
SuperTML 0.99523 ± 0.00204 0.96665 ± 0.00138 0.96062 ± 0.00211 0.97262 ± 0.00134 0.96623 ± 0.00643 0.97915 ± 0.00429 0.99199 ± 0.00060 0.10162 ± 0.00422 0.90289 ± 0.00558 3,560,793 ± 0.00000 751,565,383,718.40002 ± 241,897,377,555.09045 5,590.31739 ± 596.28220
FeatureWrap 0.98241 ± 0.00236 0.95954 ± 0.00085 0.95563 ± 0.00122 0.96896 ± 0.00085 0.96842 ± 0.00220 0.96951 ± 0.00220 0.98960 ± 0.00047 0.11845 ± 0.00304 0.89121 ± 0.00304 3,016,233 ± 0.00000 1,111,128,403,916.80005 ± 2,458,531,738,437.63916 489.89216 ± 177.26971
BIE 0.99982 ± 0.00012 0.96921 ± 0.00111 0.96549 ± 0.00095 0.97591 ± 0.00063 0.97355 ± 0.00259 0.97828 ± 0.00178 0.99383 ± 0.00052 0.09316 ± 0.00474 0.91519 ± 0.00252 4,943,209 ± 0.00000 263,538,065,689.60001 ± 148,660,074,826.40341 5,218.75606 ± 376.15809

Preprocessed heloc

Source: OpenML · FICO

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees XGBoost 0.73153 ± 0.00194 0.79220 ± 0.00038 0.71321 ± 0.00245 1.21999 ± 0.03794
MLP MLP 0.71924 ± 0.00300 0.78686 ± 0.00112 0.70771 ± 0.00251 27.11040 ± 3.04776 275,457 ± 0.00000 549,888 ± 0.00000
ViT BarGraph 0.72856 ± 0.00239 0.78951 ± 0.00144 0.71816 ± 0.00207 140.40542 ± 0.97042 8,749,441 ± 0.00000 170,357,984 ± 0.00000
ViT+MLP REFINED 0.72613 ± 0.00148 0.78765 ± 0.00110 0.71400 ± 0.00383 307.87920 ± 5.66926 16,578,023 ± 0.00000 7,724,505,912 ± 1,526,689,530.08476
CNN REFINED 0.72451 ± 0.00327 0.78669 ± 0.00416 0.70942 ± 0.01123 165.31761 ± 0.96082 796,041 ± 0.00000 14,232,096 ± 0.00000
CNN+MLP DistanceMatrix 0.72330 ± 0.00193 0.78443 ± 0.00149 0.71380 ± 0.00481 81.03928 ± 1.43009 1,442,697 ± 0.00000 177,865,984 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC Train time (s) #Params FLOPs
CatBoost 0.81534 ± 0.00123 0.71452 ± 0.00187 0.73018 ± 0.00155 0.71293 ± 0.00111 0.72758 ± 0.00279 0.69887 ± 0.00154 0.79083 ± 0.00025 0.55470 ± 0.00032 0.45894 ± 0.00310 12.60065 ± 0.80073
LightGBM 0.81080 ± 0.00145 0.71938 ± 0.00140 0.72964 ± 0.00322 0.71334 ± 0.00345 0.72539 ± 0.00349 0.70169 ± 0.00365 0.78875 ± 0.00157 0.55797 ± 0.00217 0.45789 ± 0.00647 1.06779 ± 0.02788
XGBoost 0.80266 ± 0.00124 0.71533 ± 0.00037 0.73153 ± 0.00194 0.71321 ± 0.00245 0.73093 ± 0.00165 0.69634 ± 0.00339 0.79220 ± 0.00038 0.55225 ± 0.00045 0.46162 ± 0.00391 1.21999 ± 0.03794
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.74086 ± 0.00411 0.70939 ± 0.00346 0.71924 ± 0.00300 0.70771 ± 0.00251 0.70657 ± 0.00763 0.70901 ± 0.01038 0.78686 ± 0.00112 0.55979 ± 0.00170 0.43772 ± 0.00560 275,457 ± 0.00000 549,888 ± 0.00000 27.11040 ± 3.04776
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.73189 ± 0.00614 0.71060 ± 0.00194 0.70385 ± 0.00423 0.69168 ± 0.00179 0.69073 ± 0.01107 0.69296 ± 0.01306 0.77142 ± 0.00198 0.57640 ± 0.00316 0.40697 ± 0.00786 3,652,951 ± 0.00000 126,416,850 ± 0.00000 246.38582 ± 7.80233
REFINED 0.74723 ± 0.00783 0.72046 ± 0.00419 0.72167 ± 0.00303 0.70543 ± 0.01166 0.71610 ± 0.01037 0.69606 ± 0.03166 0.78639 ± 0.00293 0.56040 ± 0.00353 0.44248 ± 0.00641 16,030,983 ± 0.00000 835,827,367 ± 0.00000 239.63486 ± 0.81967
DistanceMatrix 0.75009 ± 0.00436 0.71182 ± 0.00495 0.72303 ± 0.00530 0.71035 ± 0.00855 0.71273 ± 0.01586 0.70901 ± 0.02836 0.78008 ± 0.00409 0.56678 ± 0.00424 0.44561 ± 0.01073 11,227,553 ± 0.00000 112,114,696 ± 0.00000 232.46146 ± 1.59433
BarGraph 0.74949 ± 0.00270 0.71816 ± 0.00200 0.72856 ± 0.00239 0.71816 ± 0.00207 0.71505 ± 0.00609 0.72141 ± 0.00824 0.78951 ± 0.00144 0.55943 ± 0.00256 0.45648 ± 0.00441 8,749,441 ± 0.00000 170,357,984 ± 0.00000 140.40542 ± 0.97042
Combination 0.74370 ± 0.00339 0.72019 ± 0.00390 0.72424 ± 0.00340 0.70820 ± 0.01185 0.71976 ± 0.02327 0.69944 ± 0.04327 0.78571 ± 0.00210 0.56378 ± 0.00389 0.44850 ± 0.00622 22,121,113 ± 0.00000 731,558,160 ± 0.00000 265.40014 ± 1.80066
SuperTML 0.74462 ± 0.00302 0.71573 ± 0.00253 0.71222 ± 0.00415 0.70539 ± 0.01196 0.69297 ± 0.01381 0.71972 ± 0.03696 0.78436 ± 0.00283 0.56604 ± 0.00366 0.42549 ± 0.00844 4,226,689 ± 0.00000 34,953,804 ± 0.00000 294.30081 ± 4.58905
FeatureWrap 0.73070 ± 0.00743 0.69602 ± 0.00967 0.68602 ± 0.01163 0.60964 ± 0.03549 0.75465 ± 0.02510 0.51465 ± 0.05618 0.75080 ± 0.00370 0.60916 ± 0.01238 0.38279 ± 0.01778 7,621,953 ± 0.00000 74,702,240 ± 0.00000 198.13757 ± 1.54118
BIE 0.74323 ± 0.00552 0.70993 ± 0.00401 0.70939 ± 0.00418 0.69029 ± 0.00876 0.70647 ± 0.01856 0.67634 ± 0.03403 0.77499 ± 0.00432 0.57229 ± 0.00477 0.41803 ± 0.00763 21,504,097 ± 0.00000 718,141,612 ± 0.00000 275.59880 ± 0.41604
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.75018 ± 0.00550 0.71168 ± 0.00559 0.71965 ± 0.00329 0.70459 ± 0.00475 0.71195 ± 0.00474 0.69747 ± 0.01008 0.78619 ± 0.00211 0.56072 ± 0.00448 0.43803 ± 0.00659 4,365,975 ± 0.00000 1,260,800,912 ± 249,187,659.8711 271.84837 ± 4.91254
IGTD 0.74842 ± 0.00453 0.71249 ± 0.00535 0.72330 ± 0.00318 0.71260 ± 0.01017 0.71039 ± 0.01906 0.71662 ± 0.03720 0.78636 ± 0.00235 0.56076 ± 0.00270 0.44690 ± 0.00519 3,802,695 ± 0.00000 3,641,537,502 ± 319,876,463.64556 124.45561 ± 1.42195
REFINED 0.74792 ± 0.00437 0.72073 ± 0.00289 0.72613 ± 0.00148 0.71400 ± 0.00383 0.71500 ± 0.00683 0.71324 ± 0.01386 0.78765 ± 0.00110 0.56077 ± 0.00337 0.45142 ± 0.00275 16,578,023 ± 0.00000 7,724,505,912 ± 1,526,689,530.08476 307.87920 ± 5.66926
DistanceMatrix 0.74321 ± 0.00476 0.70993 ± 0.00393 0.72046 ± 0.00282 0.70510 ± 0.00890 0.71420 ± 0.02035 0.69803 ± 0.03661 0.78704 ± 0.00253 0.55945 ± 0.00222 0.44063 ± 0.00487 11,758,017 ± 0.00000 1,613,907,008 ± 318,976,379.81172 271.26229 ± 3.63171
BarGraph 0.74596 ± 0.00200 0.71600 ± 0.00264 0.72262 ± 0.00585 0.71318 ± 0.00632 0.70727 ± 0.00958 0.71944 ± 0.01431 0.78838 ± 0.00196 0.55868 ± 0.00227 0.44489 ± 0.01145 8,791,489 ± 0.00000 1,906,052,864 ± 376,716,774.43295 161.77120 ± 3.03141
Combination 0.74902 ± 0.00614 0.71789 ± 0.00307 0.72059 ± 0.00417 0.71308 ± 0.00592 0.70250 ± 0.01088 0.72451 ± 0.02052 0.78417 ± 0.00110 0.56429 ± 0.00147 0.44146 ± 0.00785 21,657,369 ± 0.00000 7,228,835,456 ± 1,428,724,054.47137 319.35856 ± 3.76759
SuperTML 0.75261 ± 0.00692 0.71708 ± 0.00165 0.72167 ± 0.00175 0.71055 ± 0.01137 0.70912 ± 0.01758 0.71380 ± 0.03915 0.79104 ± 0.00086 0.55705 ± 0.00184 0.44362 ± 0.00298 4,795,617 ± 0.00000 716,128,920 ± 62,905,513.48657 294.52168 ± 10.56306
FeatureWrap 0.75148 ± 0.00220 0.71479 ± 0.00429 0.72194 ± 0.00288 0.70130 ± 0.01050 0.72330 ± 0.01384 0.68169 ± 0.03108 0.78393 ± 0.00221 0.56229 ± 0.00166 0.44295 ± 0.00534 7,847,297 ± 0.00000 1,075,005,824 ± 212,466,681.36163 240.10630 ± 3.00511
BIE 0.75198 ± 0.00303 0.71182 ± 0.00267 0.71830 ± 0.00406 0.70325 ± 0.00526 0.71089 ± 0.01528 0.69662 ± 0.02377 0.78720 ± 0.00330 0.56055 ± 0.00316 0.43577 ± 0.00746 21,382,337 ± 0.00000 7,077,399,136 ± 1,398,793,823.74174 340.72954 ± 5.72634
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.73852 ± 0.00634 0.71249 ± 0.00620 0.70749 ± 0.00639 0.69137 ± 0.00852 0.69972 ± 0.01131 0.68366 ± 0.01986 0.77448 ± 0.00169 0.57122 ± 0.00149 0.41381 ± 0.01271 278,225 ± 0.00000 37,160,128 ± 0.00000 113.83074 ± 3.59936
IGTD 0.71573 ± 0.00507 0.52384 ± 0.00876 0.60230 ± 0.05338 0.31990 ± 0.18837 0.83421 ± 0.01942 0.21493 ± 0.14625 0.76311 ± 0.00692 0.66649 ± 0.00670 0.25297 ± 0.10909 1,356,865 ± 0.00000 24,724,160 ± 0.00000 63.25363 ± 0.26247
REFINED 0.75296 ± 0.00231 0.71708 ± 0.00435 0.72451 ± 0.00327 0.70942 ± 0.01123 0.71803 ± 0.01686 0.70254 ± 0.03596 0.78669 ± 0.00416 0.56117 ± 0.00429 0.44858 ± 0.00721 796,041 ± 0.00000 14,232,096 ± 0.00000 165.31761 ± 0.96082
DistanceMatrix 0.74703 ± 0.00930 0.71425 ± 0.00425 0.72073 ± 0.00613 0.70170 ± 0.01133 0.71945 ± 0.01534 0.68592 ± 0.03149 0.78406 ± 0.00406 0.56305 ± 0.00668 0.44055 ± 0.01177 1,149,929 ± 0.00000 177,281,304 ± 0.00000 75.59714 ± 0.54278
BarGraph 0.75985 ± 0.01265 0.71209 ± 0.00511 0.71519 ± 0.01434 0.69929 ± 0.02890 0.70812 ± 0.02192 0.69465 ± 0.06668 0.78234 ± 0.00528 0.57148 ± 0.01425 0.43118 ± 0.02807 4,560,465 ± 0.00000 698,342,656 ± 0.00000 128.64228 ± 4.40663
Combination 0.74876 ± 0.00342 0.71695 ± 0.00495 0.72113 ± 0.00534 0.70105 ± 0.01535 0.72117 ± 0.01167 0.68338 ± 0.03849 0.78389 ± 0.00117 0.56961 ± 0.00628 0.44144 ± 0.01061 3,038,273 ± 0.00000 475,324,672 ± 0.00000 96.89109 ± 1.28411
SuperTML 0.76008 ± 0.00571 0.72762 ± 0.00297 0.71735 ± 0.00627 0.70117 ± 0.00717 0.71105 ± 0.01018 0.69183 ± 0.01515 0.78645 ± 0.00309 0.55941 ± 0.00324 0.43344 ± 0.01240 536,857 ± 0.00000 448,495,408 ± 0.00000 392.56344 ± 14.20557
FeatureWrap 0.73229 ± 0.01224 0.69372 ± 0.00913 0.68589 ± 0.02771 0.61307 ± 0.08937 0.74655 ± 0.04798 0.54000 ± 0.14382 0.75923 ± 0.00959 0.60747 ± 0.01968 0.38426 ± 0.03925 411,345 ± 0.00000 7,647,744 ± 0.00000 79.77829 ± 0.69233
BIE 0.75021 ± 0.01039 0.70587 ± 0.00798 0.70709 ± 0.00667 0.67746 ± 0.02397 0.71782 ± 0.02007 0.64479 ± 0.05931 0.77332 ± 0.00357 0.57550 ± 0.00433 0.41450 ± 0.01299 341,729 ± 0.00000 206,823,744 ± 0.00000 136.01211 ± 0.56600
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.74624 ± 0.00889 0.71222 ± 0.00801 0.71344 ± 0.00636 0.70164 ± 0.00976 0.70162 ± 0.02283 0.70394 ± 0.04204 0.77794 ± 0.00491 0.57164 ± 0.00532 0.42742 ± 0.01158 651,793 ± 0.00000 37,905,920 ± 0.00000 140.01672 ± 15.43977
IGTD 0.71452 ± 0.00546 0.52221 ± 0.00322 0.57583 ± 0.06515 0.21285 ± 0.24229 0.69059 ± 0.38899 0.14620 ± 0.17598 0.76697 ± 0.00577 0.66653 ± 0.00731 0.17729 ± 0.15261 1,762,881 ± 0.00000 25,535,168 ± 0.00000 68.83911 ± 0.24535
REFINED 0.74584 ± 0.00558 0.71735 ± 0.00624 0.71911 ± 0.00874 0.70675 ± 0.01204 0.70749 ± 0.01084 0.70648 ± 0.02383 0.78634 ± 0.00521 0.56240 ± 0.00557 0.43749 ± 0.01754 1,255,689 ± 0.00000 15,150,144 ± 0.00000 165.45272 ± 0.39471
DistanceMatrix 0.75565 ± 0.00816 0.71101 ± 0.00460 0.72330 ± 0.00193 0.71380 ± 0.00481 0.70810 ± 0.00876 0.72000 ± 0.01862 0.78443 ± 0.00149 0.56410 ± 0.00153 0.44634 ± 0.00346 1,442,697 ± 0.00000 177,865,984 ± 0.00000 81.03928 ± 1.43009
BarGraph 0.76289 ± 0.00613 0.71344 ± 0.00897 0.71992 ± 0.00582 0.70786 ± 0.01256 0.70807 ± 0.01222 0.70873 ± 0.03290 0.78508 ± 0.00268 0.56360 ± 0.00460 0.43951 ± 0.01190 4,625,681 ± 0.00000 698,472,704 ± 0.00000 132.94448 ± 3.62290
Combination 0.75548 ± 0.00365 0.71654 ± 0.00216 0.71789 ± 0.00636 0.70241 ± 0.01238 0.71114 ± 0.01823 0.69549 ± 0.03671 0.78277 ± 0.00465 0.56702 ± 0.00543 0.43534 ± 0.01221 3,103,489 ± 0.00000 475,454,720 ± 0.00000 106.05786 ± 5.47090
SuperTML 0.75554 ± 0.00903 0.71816 ± 0.00418 0.71978 ± 0.00274 0.70065 ± 0.00937 0.71852 ± 0.01520 0.68479 ± 0.03070 0.78556 ± 0.00343 0.56152 ± 0.00433 0.43866 ± 0.00577 820,377 ± 0.00000 449,061,536 ± 0.00000 385.57753 ± 17.30651
FeatureWrap 0.75843 ± 0.01048 0.70817 ± 0.00572 0.71236 ± 0.00795 0.68095 ± 0.02661 0.72714 ± 0.01910 0.64366 ± 0.05901 0.77364 ± 0.00599 0.57601 ± 0.01118 0.42524 ± 0.01285 979,889 ± 0.00000 8,783,488 ± 0.00000 82.89502 ± 0.41953
BIE 0.75554 ± 0.01022 0.70952 ± 0.00401 0.71951 ± 0.00599 0.69518 ± 0.01190 0.72585 ± 0.01362 0.66789 ± 0.02955 0.78493 ± 0.00434 0.56597 ± 0.00839 0.43807 ± 0.01232 592,481 ± 0.00000 207,324,416 ± 0.00000 139.29321 ± 0.56451

Qsar-biodeg

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees CatBoost 0.84528 ± 0.00954 0.90328 ± 0.00679 0.77345 ± 0.01441 2.07775 ± 0.02123
MLP MLP 0.81384 ± 0.01699 0.90547 ± 0.00199 0.71227 ± 0.04256 7.07626 ± 0.03709 76,801 ± 0.00000 153,088 ± 0.00000
ViT Combination 0.85031 ± 0.00689 0.91933 ± 0.00531 0.78288 ± 0.01555 35.89860 ± 0.99466 11,376,727 ± 0.00000 111,112,224 ± 0.00000
ViT+MLP Combination 0.85535 ± 0.01722 0.91799 ± 0.00117 0.78944 ± 0.02817 43.58147 ± 1.86796 11,315,031 ± 0.00000 3,535,396,992 ± 310,552,970.21189
CNN REFINED 0.85031 ± 0.01434 0.90589 ± 0.01199 0.77998 ± 0.02926 25.17825 ± 0.46305 9,909,553 ± 0.00000 340,932,336 ± 0.00000
CNN+MLP REFINED 0.85912 ± 0.01052 0.90952 ± 0.00963 0.79213 ± 0.02105 27.31155 ± 1.94910 9,784,689 ± 0.00000 340,682,640 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC Train time (s) #Params FLOPs
CatBoost 1.00000 ± 0.00000 0.84937 ± 0.00825 0.84528 ± 0.00954 0.77345 ± 0.01441 0.76930 ± 0.01419 0.77778 ± 0.01852 0.90328 ± 0.00679 0.68418 ± 0.02481 0.65608 ± 0.02144 2.07775 ± 0.02123
LightGBM 0.99594 ± 0.00096 0.85190 ± 0.00566 0.83899 ± 0.00954 0.76035 ± 0.01288 0.76912 ± 0.01746 0.75185 ± 0.01014 0.89986 ± 0.00490 0.41587 ± 0.00885 0.63928 ± 0.02045 0.42185 ± 0.01293
XGBoost 0.99837 ± 0.00061 0.86456 ± 0.00722 0.83899 ± 0.00345 0.76536 ± 0.01024 0.75775 ± 0.01263 0.77407 ± 0.03043 0.90197 ± 0.00668 0.46418 ± 0.02441 0.64342 ± 0.01095 0.36044 ± 0.01231
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.88347 ± 0.00991 0.84304 ± 0.01812 0.81384 ± 0.01699 0.71227 ± 0.04256 0.74727 ± 0.02097 0.68519 ± 0.08385 0.90547 ± 0.00199 0.36894 ± 0.00316 0.57886 ± 0.04706 76,801 ± 0.00000 153,088 ± 0.00000 7.07626 ± 0.03709
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.91138 ± 0.02023 0.84810 ± 0.01733 0.81887 ± 0.02197 0.71728 ± 0.03638 0.76268 ± 0.03440 0.67778 ± 0.04648 0.89160 ± 0.00666 0.43290 ± 0.03698 0.58735 ± 0.05142 677,719 ± 0.00000 23,443,743 ± 0.00000 29.58682 ± 0.30404
IGTD 0.66260 ± 0.00000 0.66456 ± 0.00000 0.66038 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.50000 ± 0.00000 0.64079 ± 0.00000 0.00000 ± 0.00000 19,943,815 ± 0.00000 2,020,915,039 ± 0.00000 61.29744 ± 0.30382
REFINED 0.92222 ± 0.02092 0.84304 ± 0.00825 0.83648 ± 0.02476 0.75538 ± 0.03627 0.77030 ± 0.05212 0.74444 ± 0.05617 0.89901 ± 0.00300 0.42438 ± 0.04314 0.63457 ± 0.05425 10,065,543 ± 0.00000 1,013,835,391 ± 0.00000 40.20941 ± 1.32542
DistanceMatrix 0.88889 ± 0.01597 0.85316 ± 0.00693 0.80629 ± 0.02057 0.70298 ± 0.02562 0.73682 ± 0.05021 0.67407 ± 0.03099 0.90148 ± 0.01580 0.38558 ± 0.02197 0.56191 ± 0.04381 11,380,375 ± 0.00000 4,682,747,412 ± 0.00000 112.79609 ± 0.10942
BarGraph 0.90786 ± 0.01845 0.84684 ± 0.02255 0.84151 ± 0.02197 0.76166 ± 0.04362 0.77426 ± 0.01207 0.75185 ± 0.07476 0.90833 ± 0.00608 0.40301 ± 0.02131 0.64441 ± 0.05562 17,078,137 ± 0.00000 332,845,900 ± 0.00000 56.28975 ± 2.26031
Combination 0.92439 ± 0.01280 0.87342 ± 0.01343 0.85031 ± 0.00689 0.78288 ± 0.01555 0.77149 ± 0.01774 0.79630 ± 0.04141 0.91933 ± 0.00531 0.38932 ± 0.03501 0.66980 ± 0.01812 11,376,727 ± 0.00000 111,112,224 ± 0.00000 35.89860 ± 0.99466
SuperTML 0.89295 ± 0.02247 0.84557 ± 0.01650 0.80503 ± 0.01938 0.71044 ± 0.05840 0.71352 ± 0.02496 0.71852 ± 0.11814 0.87637 ± 0.00247 0.44840 ± 0.02651 0.56902 ± 0.05827 23,309,025 ± 0.00000 202,703,164 ± 0.00000 50.94762 ± 0.65236
FeatureWrap 0.85312 ± 0.00860 0.80886 ± 0.00530 0.76352 ± 0.03003 0.59579 ± 0.05415 0.71116 ± 0.06438 0.51482 ± 0.06198 0.84804 ± 0.02000 0.47564 ± 0.02456 0.44718 ± 0.07381 2,478,817 ± 0.00000 24,855,412 ± 0.00000 26.06886 ± 0.06475
BIE 0.88889 ± 0.01472 0.83418 ± 0.02300 0.80629 ± 0.02105 0.70658 ± 0.04614 0.72470 ± 0.02195 0.69259 ± 0.07922 0.89704 ± 0.00955 0.40296 ± 0.01374 0.56418 ± 0.05600 5,306,497 ± 0.00000 180,026,090 ± 0.00000 18.89083 ± 0.42705
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.89485 ± 0.01734 0.84304 ± 0.02948 0.82893 ± 0.01210 0.73164 ± 0.02632 0.78197 ± 0.01673 0.68889 ± 0.04793 0.89908 ± 0.00510 0.41228 ± 0.01391 0.61026 ± 0.03068 789,431 ± 0.00000 234,662,968 ± 46,379,341.33595 35.02912 ± 0.62252
IGTD 0.89756 ± 0.00618 0.86203 ± 0.00530 0.83145 ± 0.02328 0.74401 ± 0.04415 0.76464 ± 0.01701 0.72593 ± 0.06854 0.90638 ± 0.00330 0.36973 ± 0.00881 0.61976 ± 0.05779 19,841,031 ± 0.00000 17,493,490,936 ± 3,457,454,724.07943 68.65184 ± 0.32894
REFINED 0.92114 ± 0.02938 0.84810 ± 0.02146 0.84906 ± 0.02311 0.77265 ± 0.03966 0.78935 ± 0.03173 0.75926 ± 0.06677 0.89968 ± 0.00773 0.42395 ± 0.03069 0.66142 ± 0.05399 10,381,671 ± 0.00000 19,727,353,710 ± 1,732,871,386.98258 52.78226 ± 3.35506
DistanceMatrix 0.89377 ± 0.01043 0.86203 ± 0.01372 0.82767 ± 0.01757 0.74353 ± 0.02920 0.75177 ± 0.03060 0.73704 ± 0.04793 0.90356 ± 0.01117 0.39109 ± 0.02854 0.61471 ± 0.04150 11,647,287 ± 0.00000 38,262,608,032 ± 7,562,311,912.4608 117.23654 ± 0.77614
BarGraph 0.92629 ± 0.01210 0.86456 ± 0.01150 0.82138 ± 0.02206 0.72968 ± 0.04916 0.74668 ± 0.01975 0.71852 ± 0.09388 0.90406 ± 0.00769 0.42141 ± 0.02693 0.59939 ± 0.05981 17,072,217 ± 0.00000 12,966,251,088 ± 732,194,395.56636 75.38963 ± 8.44481
Combination 0.94065 ± 0.01339 0.86835 ± 0.01443 0.85535 ± 0.01722 0.78944 ± 0.02817 0.77949 ± 0.01839 0.80000 ± 0.04015 0.91799 ± 0.00117 0.40725 ± 0.02009 0.67962 ± 0.04063 11,315,031 ± 0.00000 3,535,396,992 ± 310,552,970.21189 43.58147 ± 1.86796
SuperTML 0.92520 ± 0.02326 0.84304 ± 0.01217 0.80000 ± 0.00820 0.68679 ± 0.03608 0.73332 ± 0.02467 0.65185 ± 0.08008 0.88487 ± 0.00168 0.43864 ± 0.02864 0.54580 ± 0.02822 22,928,993 ± 0.00000 7,786,935,184 ± 439,722,342.38468 66.24800 ± 6.86827
FeatureWrap 0.88780 ± 0.01107 0.83544 ± 0.01951 0.80503 ± 0.01177 0.68103 ± 0.02795 0.76538 ± 0.01704 0.61482 ± 0.04611 0.90952 ± 0.00729 0.37953 ± 0.02420 0.55057 ± 0.03017 2,917,409 ± 0.00000 360,110,752 ± 71,173,136.63975 35.18798 ± 0.53815
BIE 0.90190 ± 0.02154 0.84177 ± 0.01790 0.80252 ± 0.01142 0.70981 ± 0.02820 0.70830 ± 0.02201 0.71481 ± 0.06495 0.88381 ± 0.01224 0.44923 ± 0.00981 0.56200 ± 0.03313 5,614,369 ± 0.00000 1,759,626,448 ± 347,776,712.92199 28.88145 ± 0.39315
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.92276 ± 0.00796 0.86582 ± 0.00693 0.84780 ± 0.01745 0.76587 ± 0.03540 0.79931 ± 0.01773 0.73704 ± 0.06058 0.89157 ± 0.00584 0.38719 ± 0.00776 0.65561 ± 0.04349 766,225 ± 0.00000 30,574,976 ± 0.00000 25.09220 ± 1.22643
IGTD 0.88428 ± 0.03785 0.84430 ± 0.02393 0.82642 ± 0.03462 0.72275 ± 0.05636 0.78918 ± 0.05899 0.66667 ± 0.05399 0.89788 ± 0.02400 0.38704 ± 0.04211 0.60224 ± 0.08126 4,761,809 ± 0.00000 163,460,752 ± 0.00000 16.20256 ± 0.06821
REFINED 0.96287 ± 0.01078 0.84937 ± 0.01511 0.85031 ± 0.01434 0.77998 ± 0.02926 0.77678 ± 0.01077 0.78519 ± 0.05943 0.90589 ± 0.01199 0.39054 ± 0.03812 0.66766 ± 0.03799 9,909,553 ± 0.00000 340,932,336 ± 0.00000 25.17825 ± 0.46305
DistanceMatrix 0.93984 ± 0.02906 0.85190 ± 0.01930 0.84025 ± 0.01515 0.74686 ± 0.02954 0.80735 ± 0.02148 0.69630 ± 0.05003 0.91094 ± 0.00938 0.38867 ± 0.03748 0.63560 ± 0.03667 398,881 ± 0.00000 237,796,608 ± 0.00000 21.67408 ± 0.90089
BarGraph 0.93225 ± 0.01063 0.83671 ± 0.02343 0.84277 ± 0.02038 0.76706 ± 0.03815 0.76951 ± 0.02019 0.76667 ± 0.06495 0.90660 ± 0.00682 0.37349 ± 0.01086 0.64946 ± 0.05013 1,643,897 ± 0.00000 285,080,640 ± 0.00000 24.90927 ± 0.31574
Combination 0.98618 ± 0.00411 0.85316 ± 0.01638 0.84528 ± 0.01812 0.76814 ± 0.03445 0.78188 ± 0.03446 0.75926 ± 0.07052 0.90797 ± 0.00365 0.38541 ± 0.01811 0.65452 ± 0.04255 6,506,545 ± 0.00000 1,185,363,264 ± 0.00000 27.36433 ± 0.40257
SuperTML 0.90488 ± 0.01610 0.81139 ± 0.02508 0.77736 ± 0.02834 0.64904 ± 0.04761 0.69948 ± 0.05551 0.60741 ± 0.05768 0.85118 ± 0.02660 0.47525 ± 0.04847 0.49086 ± 0.06707 308,001 ± 0.00000 591,600,032 ± 0.00000 59.56045 ± 0.11764
FeatureWrap 0.85230 ± 0.01860 0.82278 ± 0.02571 0.81258 ± 0.03188 0.65190 ± 0.09313 0.86566 ± 0.02119 0.53333 ± 0.12519 0.90734 ± 0.00921 0.41628 ± 0.04282 0.56945 ± 0.07532 771,937 ± 0.00000 8,683,008 ± 0.00000 18.54361 ± 3.35914
BIE 0.92358 ± 0.04874 0.81646 ± 0.03319 0.77987 ± 0.01541 0.63687 ± 0.04206 0.72792 ± 0.05422 0.57407 ± 0.08282 0.84988 ± 0.02171 0.50347 ± 0.05394 0.49330 ± 0.03950 1,709,825 ± 0.00000 144,586,368 ± 0.00000 19.45627 ± 0.26663
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.94932 ± 0.01008 0.84430 ± 0.01878 0.85157 ± 0.01378 0.77328 ± 0.03488 0.80071 ± 0.01762 0.75185 ± 0.07361 0.88854 ± 0.00929 0.39206 ± 0.02848 0.66599 ± 0.03607 1,105,425 ± 0.00000 31,252,480 ± 0.00000 28.72899 ± 0.44864
IGTD 0.90407 ± 0.02783 0.85823 ± 0.02080 0.84906 ± 0.01541 0.77060 ± 0.03187 0.79640 ± 0.03748 0.75185 ± 0.07702 0.91083 ± 0.01195 0.37127 ± 0.01984 0.66188 ± 0.03869 5,363,153 ± 0.00000 164,662,160 ± 0.00000 17.62227 ± 0.66907
REFINED 0.98726 ± 0.00555 0.83924 ± 0.02351 0.85912 ± 0.01052 0.79213 ± 0.02105 0.79284 ± 0.01040 0.79259 ± 0.04421 0.90952 ± 0.00963 0.38927 ± 0.03677 0.68623 ± 0.02760 9,784,689 ± 0.00000 340,682,640 ± 0.00000 27.31155 ± 1.94910
DistanceMatrix 0.96423 ± 0.01633 0.85696 ± 0.00722 0.85157 ± 0.01812 0.78160 ± 0.03846 0.77956 ± 0.03137 0.78889 ± 0.08029 0.91778 ± 0.01068 0.37667 ± 0.03603 0.67195 ± 0.04565 487,713 ± 0.00000 237,973,696 ± 0.00000 25.62306 ± 0.40329
BarGraph 0.98591 ± 0.01207 0.83798 ± 0.00849 0.83648 ± 0.01334 0.76349 ± 0.02040 0.75063 ± 0.02432 0.77778 ± 0.03465 0.90106 ± 0.02035 0.38500 ± 0.03244 0.63936 ± 0.03037 1,711,929 ± 0.00000 285,216,384 ± 0.00000 29.47028 ± 0.50732
Combination 0.97344 ± 0.00805 0.86456 ± 0.02031 0.84403 ± 0.00689 0.76691 ± 0.02117 0.77830 ± 0.02188 0.75926 ± 0.06142 0.91298 ± 0.00702 0.36421 ± 0.01151 0.65172 ± 0.02346 6,443,313 ± 0.00000 1,185,236,736 ± 0.00000 31.55761 ± 0.85695
SuperTML 0.90190 ± 0.01529 0.82532 ± 0.01150 0.80503 ± 0.02395 0.67652 ± 0.05840 0.76916 ± 0.01546 0.60741 ± 0.08425 0.89048 ± 0.00405 0.42739 ± 0.02224 0.54946 ± 0.06066 401,441 ± 0.00000 591,786,384 ± 0.00000 68.14005 ± 1.34413
FeatureWrap 0.87886 ± 0.01160 0.82278 ± 0.03258 0.79874 ± 0.01258 0.64689 ± 0.02710 0.80384 ± 0.05650 0.54444 ± 0.04648 0.90152 ± 0.01347 0.40162 ± 0.01168 0.53404 ± 0.03323 805,537 ± 0.00000 8,749,968 ± 0.00000 19.23265 ± 1.01026
BIE 0.97073 ± 0.01768 0.83038 ± 0.02165 0.80880 ± 0.01699 0.70342 ± 0.02040 0.74527 ± 0.03833 0.66667 ± 0.01310 0.87478 ± 0.00864 0.42210 ± 0.01331 0.56522 ± 0.03576 1,792,161 ± 0.00000 144,750,720 ± 0.00000 23.14677 ± 0.18553

Sick

Source: OpenML · Original

Leaderboard

Family Best variant Test Accuracy (↑) Test ROC AUC (↑) Test F1 (↑) Train time (s) #Params FLOPs
Trees XGBoost 0.99470 ± 0.00000 0.99956 ± 0.00006 0.95385 ± 0.00000 1.35484 ± 0.10108
MLP MLP 0.95230 ± 0.00467 0.94621 ± 0.00286 0.46935 ± 0.09472 16.09173 ± 0.38074 28,161 ± 0.00000 55,808 ± 0.00000
ViT REFINED 0.99046 ± 0.00443 0.99864 ± 0.00083 0.92076 ± 0.03709 175.05356 ± 1.89928 8,528,647 ± 0.00000 1,144,087,780 ± 0.00000
ViT+MLP REFINED 0.99046 ± 0.00237 0.99753 ± 0.00105 0.92089 ± 0.01929 188.65539 ± 4.48373 9,115,335 ± 0.00000 9,736,695,328 ± 1,924,383,382.47501
CNN SuperTML 0.98905 ± 0.00230 0.99735 ± 0.00054 0.90451 ± 0.02041 128.05202 ± 1.17262 161,177 ± 0.00000 259,514,168 ± 0.00000
CNN+MLP SuperTML 0.98516 ± 0.00201 0.98777 ± 0.00760 0.87574 ± 0.01504 133.64104 ± 1.96535 185,833 ± 0.00000 259,563,040 ± 0.00000
Architecture Results
Tree Baselines
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC Train time (s) #Params FLOPs
CatBoost 1.00000 ± 0.00000 0.98834 ± 0.00158 0.99329 ± 0.00148 0.94181 ± 0.01323 0.98124 ± 0.01714 0.90588 ± 0.02461 0.99974 ± 0.00016 0.01154 ± 0.00133 0.93923 ± 0.01374 12.15761 ± 0.10894
LightGBM 1.00000 ± 0.00000 0.98975 ± 0.00262 0.99011 ± 0.00158 0.91550 ± 0.01476 0.93823 ± 0.00174 0.89412 ± 0.02631 0.99853 ± 0.00025 0.02572 ± 0.00208 0.91063 ± 0.01518 117.51338 ± 5.29518
XGBoost 1.00000 ± 0.00000 0.98975 ± 0.00148 0.99470 ± 0.00000 0.95385 ± 0.00000 1.00000 ± 0.00000 0.91177 ± 0.00000 0.99956 ± 0.00006 0.01558 ± 0.00055 0.95218 ± 0.00000 1.35484 ± 0.10108
MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
MLP 0.97114 ± 0.00560 0.96643 ± 0.00250 0.95230 ± 0.00467 0.46935 ± 0.09472 0.69505 ± 0.04481 0.35882 ± 0.09160 0.94621 ± 0.00286 0.12325 ± 0.00276 0.47606 ± 0.08221 28,161 ± 0.00000 55,808 ± 0.00000 16.09173 ± 0.38074
ViT
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.96561 ± 0.00522 0.95901 ± 0.00290 0.94982 ± 0.00691 0.58199 ± 0.05247 0.58762 ± 0.06874 0.58235 ± 0.07323 0.96186 ± 0.00525 0.11067 ± 0.00933 0.55705 ± 0.05582 12,541,273 ± 0.00000 125,166,258 ± 0.00000 164.74915 ± 0.47587
IGTD 0.97856 ± 0.00504 0.97350 ± 0.00331 0.96148 ± 0.00383 0.69224 ± 0.05014 0.66437 ± 0.02961 0.72941 ± 0.09843 0.96866 ± 0.00795 0.10498 ± 0.01729 0.67441 ± 0.05194 2,706,017 ± 0.00000 26,246,106 ± 0.00000 94.31224 ± 0.81427
REFINED 0.99401 ± 0.00166 0.98834 ± 0.00321 0.99046 ± 0.00443 0.92076 ± 0.03709 0.91884 ± 0.04085 0.92353 ± 0.04460 0.99864 ± 0.00083 0.02541 ± 0.01088 0.91592 ± 0.03927 8,528,647 ± 0.00000 1,144,087,780 ± 0.00000 175.05356 ± 1.89928
DistanceMatrix 0.98796 ± 0.00488 0.98269 ± 0.00194 0.97774 ± 0.00493 0.79409 ± 0.06064 0.88157 ± 0.02536 0.72941 ± 0.10482 0.99180 ± 0.00316 0.05697 ± 0.00967 0.78870 ± 0.05550 10,990,567 ± 0.00000 803,164,072 ± 0.00000 199.69149 ± 4.58353
BarGraph 0.99076 ± 0.00292 0.98657 ± 0.00268 0.97279 ± 0.00158 0.75566 ± 0.01051 0.82180 ± 0.02991 0.70000 ± 0.01315 0.99180 ± 0.00089 0.06448 ± 0.00903 0.74423 ± 0.01240 9,863,047 ± 0.00000 730,349,156 ± 0.00000 190.97678 ± 3.42995
Combination 0.98901 ± 0.00587 0.98481 ± 0.00407 0.97208 ± 0.00383 0.75772 ± 0.01138 0.80640 ± 0.08622 0.72353 ± 0.05343 0.99151 ± 0.00076 0.07574 ± 0.01719 0.74700 ± 0.01622 21,612,007 ± 0.00000 1,606,355,748 ± 0.00000 231.62542 ± 5.14258
SuperTML 0.98674 ± 0.00431 0.98127 ± 0.00201 0.98905 ± 0.00521 0.91076 ± 0.03696 0.91608 ± 0.09248 0.91177 ± 0.03602 0.99792 ± 0.00087 0.02856 ± 0.00687 0.90673 ± 0.03945 2,752,961 ± 0.00000 362,439,712 ± 0.00000 121.46045 ± 0.67693
FeatureWrap 0.97917 ± 0.00206 0.96396 ± 0.00296 0.94770 ± 0.00387 0.38599 ± 0.10711 0.64200 ± 0.05985 0.28235 ± 0.09207 0.83982 ± 0.08735 0.17812 ± 0.01632 0.39960 ± 0.09043 14,503,321 ± 0.00000 744,533,868 ± 0.00000 173.84322 ± 6.30341
BIE 0.98644 ± 0.00270 0.96996 ± 0.00331 0.98587 ± 0.00331 0.88289 ± 0.02445 0.88452 ± 0.04933 0.88235 ± 0.00000 0.99329 ± 0.00156 0.04914 ± 0.00662 0.87568 ± 0.02634 6,779,137 ± 0.00000 223,694,368 ± 0.00000 152.71757 ± 2.49747
ViT + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.96796 ± 0.00333 0.96113 ± 0.00375 0.95795 ± 0.00521 0.60376 ± 0.04246 0.71474 ± 0.12739 0.53529 ± 0.07613 0.96194 ± 0.00776 0.10440 ± 0.00497 0.59327 ± 0.05036 12,599,865 ± 0.00000 1,798,167,824 ± 355,394,121.1918 195.16018 ± 10.17233
IGTD 0.98621 ± 0.00183 0.97632 ± 0.00158 0.96360 ± 0.00201 0.72676 ± 0.01440 0.66223 ± 0.01696 0.80588 ± 0.02631 0.96450 ± 0.00155 0.09834 ± 0.00827 0.71154 ± 0.01558 2,728,001 ± 0.00000 845,176,500 ± 74,241,187.91248 127.48017 ± 9.17736
REFINED 0.99492 ± 0.00297 0.98587 ± 0.00279 0.99046 ± 0.00237 0.92089 ± 0.01929 0.91832 ± 0.02342 0.92353 ± 0.01611 0.99753 ± 0.00105 0.02915 ± 0.00709 0.91583 ± 0.02052 9,115,335 ± 0.00000 9,736,695,328 ± 1,924,383,382.47501 188.65539 ± 4.48373
DistanceMatrix 0.98758 ± 0.00436 0.98339 ± 0.00268 0.97738 ± 0.00689 0.80839 ± 0.06465 0.82122 ± 0.06459 0.80000 ± 0.08921 0.99066 ± 0.00470 0.06305 ± 0.01414 0.79764 ± 0.06756 10,805,607 ± 0.00000 7,124,879,680 ± 1,408,177,990.21573 242.81214 ± 3.95959
BarGraph 0.98924 ± 0.00328 0.98657 ± 0.00201 0.97244 ± 0.00426 0.75713 ± 0.02390 0.81588 ± 0.08056 0.71176 ± 0.03835 0.99140 ± 0.00121 0.06079 ± 0.00375 0.74629 ± 0.02866 10,135,719 ± 0.00000 6,480,980,256 ± 1,280,916,192.47132 213.14444 ± 3.54831
Combination 0.98591 ± 0.00448 0.98092 ± 0.00230 0.97456 ± 0.00201 0.75848 ± 0.01708 0.88386 ± 0.03475 0.66471 ± 0.01611 0.99041 ± 0.00175 0.06439 ± 0.01303 0.75393 ± 0.01941 21,649,127 ± 0.00000 14,255,003,936 ± 2,817,392,530.77657 286.07178 ± 13.08104
SuperTML 0.99038 ± 0.00399 0.98021 ± 0.00403 0.98905 ± 0.00194 0.90557 ± 0.01815 0.93825 ± 0.02786 0.87647 ± 0.03835 0.99557 ± 0.00344 0.03629 ± 0.01205 0.90077 ± 0.01866 3,214,721 ± 0.00000 6,868,302,048 ± 603,318,836.93553 160.23175 ± 12.51680
FeatureWrap 0.97803 ± 0.00149 0.96290 ± 0.00216 0.94912 ± 0.00230 0.44157 ± 0.02069 0.65242 ± 0.05546 0.33529 ± 0.02631 0.88295 ± 0.02571 0.16716 ± 0.01349 0.44404 ± 0.02254 14,466,329 ± 0.00000 6,876,137,312 ± 1,359,015,963.12424 186.36146 ± 3.23081
BIE 0.98167 ± 0.00175 0.96855 ± 0.00230 0.97738 ± 0.00383 0.80320 ± 0.03661 0.83931 ± 0.02592 0.77059 ± 0.04833 0.98004 ± 0.00999 0.07353 ± 0.01193 0.79220 ± 0.03801 6,593,921 ± 0.00000 2,199,400,704 ± 434,694,732.00111 178.52272 ± 5.77908
CNN
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.97492 ± 0.00457 0.96360 ± 0.00097 0.95866 ± 0.00201 0.61074 ± 0.01889 0.70697 ± 0.04719 0.54118 ± 0.04460 0.96834 ± 0.00508 0.09965 ± 0.00561 0.59646 ± 0.01711 5,811,921 ± 0.00000 504,544,512 ± 0.00000 60.22975 ± 2.73501
IGTD 0.99091 ± 0.00348 0.97527 ± 0.00250 0.50989 ± 0.16878 0.19767 ± 0.04733 0.11196 ± 0.03183 0.93529 ± 0.09843 0.78446 ± 0.06959 1.17614 ± 0.32310 0.21019 ± 0.05187 430,409 ± 0.00000 7,845,504 ± 0.00000 53.34989 ± 3.99032
REFINED 0.98970 ± 0.00340 0.98269 ± 0.00340 0.97703 ± 0.00331 0.79811 ± 0.03202 0.84442 ± 0.03184 0.75882 ± 0.05658 0.98767 ± 0.00635 0.06148 ± 0.00356 0.78792 ± 0.03278 658,737 ± 0.00000 13,018,464 ± 0.00000 96.42864 ± 1.62120
DistanceMatrix 0.98901 ± 0.00303 0.98622 ± 0.00290 0.98551 ± 0.00422 0.87605 ± 0.03556 0.90410 ± 0.05371 0.85294 ± 0.05502 0.99623 ± 0.00100 0.04045 ± 0.00813 0.86975 ± 0.03660 284,897 ± 0.00000 266,999,040 ± 0.00000 87.48377 ± 1.62526
BarGraph 0.99242 ± 0.00346 0.97950 ± 0.00620 0.96678 ± 0.00194 0.72186 ± 0.01493 0.72710 ± 0.02439 0.71765 ± 0.02631 0.98576 ± 0.00057 0.08901 ± 0.01131 0.70449 ± 0.01561 2,767,521 ± 0.00000 905,616,000 ± 0.00000 73.37844 ± 0.77813
Combination 0.98682 ± 0.00745 0.97950 ± 0.00567 0.96855 ± 0.00422 0.72054 ± 0.03323 0.78245 ± 0.07852 0.67647 ± 0.07499 0.98586 ± 0.00553 0.08355 ± 0.00711 0.70892 ± 0.03554 1,903,353 ± 0.00000 517,387,616 ± 0.00000 68.39209 ± 1.78483
SuperTML 0.98955 ± 0.00346 0.98057 ± 0.00306 0.98905 ± 0.00230 0.90451 ± 0.02041 0.94837 ± 0.01767 0.86471 ± 0.02631 0.99735 ± 0.00054 0.03016 ± 0.00604 0.89985 ± 0.02141 161,177 ± 0.00000 259,514,168 ± 0.00000 128.05202 ± 1.17262
FeatureWrap 0.98129 ± 0.00375 0.96502 ± 0.00290 0.93322 ± 0.02122 0.49342 ± 0.05134 0.54033 ± 0.20622 0.54118 ± 0.15920 0.91895 ± 0.02492 0.16641 ± 0.04080 0.48445 ± 0.04361 307,489 ± 0.00000 10,907,392 ± 0.00000 44.15835 ± 2.44508
BIE 0.98803 ± 0.00675 0.97173 ± 0.00375 0.97703 ± 0.00780 0.79846 ± 0.08677 0.82651 ± 0.04313 0.78235 ± 0.14197 0.99110 ± 0.00299 0.06156 ± 0.01311 0.78966 ± 0.08635 440,337 ± 0.00000 572,670,432 ± 0.00000 94.26429 ± 0.14415
CNN + MLP
Method Train Accuracy Val Accuracy Test Accuracy (↑) Test F1 (↑) Test Precision Test Recall Test ROC AUC Test LogLoss Test MCC #Params FLOPs Train time (s)
TINTO 0.97667 ± 0.00598 0.96466 ± 0.00530 0.95760 ± 0.00515 0.57806 ± 0.04051 0.72617 ± 0.08716 0.48235 ± 0.03354 0.97090 ± 0.00732 0.09546 ± 0.00854 0.57047 ± 0.04841 4,789,969 ± 0.00000 502,501,632 ± 0.00000 55.14807 ± 0.76567
IGTD 0.98477 ± 0.00272 0.97668 ± 0.00403 0.65018 ± 0.24117 0.23966 ± 0.08294 0.16098 ± 0.07059 0.78235 ± 0.31582 0.83047 ± 0.07461 0.64664 ± 0.45625 0.24157 ± 0.09687 437,209 ± 0.00000 7,858,848 ± 0.00000 49.62886 ± 0.20061
REFINED 0.98614 ± 0.00577 0.98269 ± 0.00262 0.97456 ± 0.00509 0.79243 ± 0.03449 0.78682 ± 0.07332 0.80588 ± 0.06444 0.98720 ± 0.00641 0.06921 ± 0.01543 0.78114 ± 0.03563 805,297 ± 0.00000 13,311,104 ± 0.00000 82.11304 ± 2.82156
DistanceMatrix 0.98652 ± 0.00314 0.97950 ± 0.00509 0.97774 ± 0.00644 0.80769 ± 0.04420 0.85337 ± 0.08728 0.77059 ± 0.03222 0.98925 ± 0.00286 0.06321 ± 0.00623 0.79830 ± 0.04825 343,201 ± 0.00000 267,115,168 ± 0.00000 94.17146 ± 1.66290
BarGraph 0.99220 ± 0.00274 0.98057 ± 0.00279 0.96961 ± 0.00591 0.74205 ± 0.03391 0.76914 ± 0.07782 0.72353 ± 0.04922 0.98821 ± 0.00298 0.08000 ± 0.02357 0.72835 ± 0.03530 2,795,681 ± 0.00000 905,671,808 ± 0.00000 76.31179 ± 0.78716
Combination 0.99204 ± 0.00303 0.97986 ± 0.00594 0.96608 ± 0.00550 0.69829 ± 0.04700 0.75119 ± 0.05739 0.65294 ± 0.04362 0.98512 ± 0.00242 0.09018 ± 0.01523 0.68248 ± 0.05021 1,984,057 ± 0.00000 517,548,448 ± 0.00000 73.68748 ± 0.70628
SuperTML 0.98970 ± 0.00590 0.98304 ± 0.00237 0.98516 ± 0.00201 0.87574 ± 0.01504 0.88548 ± 0.05392 0.87059 ± 0.04922 0.98777 ± 0.00760 0.05496 ± 0.01888 0.86914 ± 0.01571 185,833 ± 0.00000 259,563,040 ± 0.00000 133.64104 ± 1.96535
FeatureWrap 0.98280 ± 0.00201 0.96572 ± 0.00366 0.93958 ± 0.01746 0.48403 ± 0.02997 0.54888 ± 0.13640 0.46471 ± 0.08675 0.90951 ± 0.01294 0.16759 ± 0.02673 0.46505 ± 0.03418 380,257 ± 0.00000 11,052,288 ± 0.00000 49.26098 ± 0.49129
BIE 0.98061 ± 0.00868 0.96608 ± 0.00457 0.97774 ± 0.00426 0.81839 ± 0.03416 0.81121 ± 0.07508 0.84118 ± 0.11122 0.99103 ± 0.00178 0.06217 ± 0.00518 0.81103 ± 0.03586 450,257 ± 0.00000 572,690,016 ± 0.00000 99.25059 ± 4.39414